федеральное государственное бюджетное образовательное учреждение высшего образования

«Тверской государственный медицинский университет» Министерства здравоохранения Российской Федерации

Кафедра химии

Рабочая программа дисциплины Химия

для обучающихся 1 курса,

направление подготовки (специальность) 34.03.01 Сестринское дело

форма обучения очная

Трудоемкость, зачетные единицы/часы	2 з.е. / 72 ч.
в том числе:	
контактная работа	40 ч.
самостоятельная работа	32 ч.
Промежуточная аттестация, форма/семестр	Зачет / I семестр

Разработчики: заведующая кафедрой химии, д.б.н., профессор Зубарева Г.М.; профессор кафедры химии, к.х.н., доцент Лопина Н.П.; доцент кафедры химии, к.б.н. Бордина Г.Е.; ассистент кафедры химии Волкова Л.Р.

Внешняя рецензия дана доцентом кафедры биотехнологии, химии и стандартизации ТвГТУ, к.х.н. Ожимковой Е.В.

Рабочая программа рассмотрена и одобрена на заседании кафедры химии «12» мая 2025 г. (протокол № 8)

Рабочая программа рассмотрена и одобрена на заседании профильного методического совета

«20» мая 2025 г. (протокол № 5)

Рабочая программа утверждена на заседании центрального координационнометодического совета «27» августа 2025 г. (протокол № 1)

I. Пояснительная записка

Рабочая программа дисциплины разработана в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению 34.03.01 Сестринское дело, утвержденным Приказом Минобрнауки России от 22.09.2017 N 971 (ред. от 27.02.2023) «Об утверждении федерального государственного образовательного стандарта высшего образования — бакалавриат по специальности 34.03.01 Сестринское дело», с учётом рекомендаций основной профессиональной образовательной программы (ОПОП) высшего образования.

1. Цель и задачи дисциплины

Целью освоения дисциплины является формирование у обучающихся общепрофессиональных компетенций для оказания квалифицированной медицинской помощи в соответствии с федеральным государственным образовательным стандартом.

Задачами освоения дисциплины являются:

- формирование у населения, пациентов и членов их семей мотивации, направленной на сохранение и укрепление своего здоровья и здоровья окружающих;
- анализ научной литературы и официальных статистических обзоров, участие в проведении статистического анализа и публичное представление полученных результатов;
- участие в решении отдельных научно-исследовательских и научно-прикладных задач в области здравоохранения по диагностике, лечению, медицинской реабилитации и профилактике.

2. Планируемые результаты обучения по лисшиплине

2. планируемые результаты обучения по дисциплине								
Формируемые	Индикатор достижений	Планируемые результаты						
компетенции		обучения						
		В результате изучения						
		дисциплины студент должен:						
ОПК - 2	ИДопк-2 Демонстрирует умение	Знать:						
Способен решать профессиональные	решать профессиональные	• основы строения						
задачи с	задачи с использованием	атомов. Механизм						
использованием основных физико-	основных физико-химических,	образования						
химических,	математических и иных	химической связи;						
математических и иных	естественнонаучных понятий	• классификацию						
естественнонаучных	методов.	химических реакций,						
понятий и методов		механизмы реакции в						
		органической химии;						
		• роль биогенных						
		элементов и их						
		соединений в живых						
		системах;						

- свойства биополимеров;
- строение и свойства природных

соединений;

• свойства и способы приготовления растворов;

Уметь: пользоваться учебной, научной, научно-популярной литературой, сетью Интернет для профессиональной деятельности;

Владеть:

- навыками работы с химической посудой
- навыками приготовления растворов различной концентрацией.

3. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина «Химия» входит в часть, формируемую участниками образовательных отношений Блока 1 ОПОП бакалавриата.

- 1) Для успешного освоения дисциплины уровень начальной подготовки должен включать:
 - хорошие базовые знания по данной дисциплине и дисциплинам математического цикла, полученные в среднем образовательном учреждении;
 - понимание и активное использование химической терминологии;
 - знания основных правил техники безопасности при работе в химической лаборатории, знания простейшего лабораторного оборудования и химической посуды.
- Учебная «Химия» 2) дисциплина является частью математического, естественнонаучного и медико-биологического цикла. Она объединяет разделы общей и органической существенное химии, имеющие значение ДЛЯ формирования естественнонаучного мышления студентов. Каждый раздел химии вооружает студентов

знаниями, которые необходимы ему при рассмотрении физико-химической сущности и механизма действия лекарственных препаратов. Умение выполнять в необходимых случаях расчеты параметров этих процессов, которые позволят понять воздействие препаратов на отдельные системы организма и организм в целом. Данная дисциплина является базовой частью для изучения последующих дисциплин естественнонаучного цикла: нормальная физиология; патофизиология, клиническая патофизиология; фармакология.

4. Объём дисциплины составляет 2 зачетных единицы, 72 академических часа, в том числе 40 часов, выделенных на контактную работу обучающихся с преподавателем и 32 часа самостоятельной работы обучающихся.

5. Образовательные технологии

В процессе освоения дисциплины для формирования компетенции используются:

- образовательные технологии:
 - лекция-визуализация
 - лабораторный практикум
 - мастер-класс
 - учебно-исследовательская работа студентов
 - метод малых групп
- формы текущего и рубежного контроля успеваемости:
 - тестирование
 - решение ситуационных задач
 - контрольная работа
 - написание и защита рефератов
 - собеседование по контрольным вопросам
 - подготовка доклада

Элементы, входящие в самостоятельную работу студента: подготовка к семинарским и практическим занятиям, решение расчетных и ситуационных задач, написание рефератов, работа в Интернете, подготовка к зачету.

В рамках изучения дисциплины предусмотрены встречи с представителями российских ВУЗов и научно-исследовательских предприятий, государственных и общественных организаций, мастер — классы экспертов и специалистов по темам «ИК-спектрометрия». «Состояния воды в биологических и модельных системах».

6. Формы промежуточной аттестации

По завершению изучения дисциплины «Химия» в I семестре проводится двухэтапный сессионный зачет.

П. Учебная программа дисциплины

1. Содержание дисциплины

Модуль 1. Учение о растворах.

1.1. Растворы

- 1.1.1. Способы выражения концентрации растворов: массовая доля вещества в растворе, молярная, нормальная (молярная концентрация эквивалента), моляльная концентрация раствора. Титр раствора.
- 1.1.2 Осмос. Осмотическое давление. Осмолярность. Изо-, гипо-, гипертонические растворы.

1.2 Буферные растворы.

- 1.2.1. Буферное действие основной механизм протолитического гомеостаза организма. Механизм действия буферных систем, их количественные характеристики. Расчет рН буферных систем.
- 1.2.2. Буферные системы крови: гидрокарбонатная, фосфатная, гемоглобиновая, оксигемоглобиновая, белковая.

Рубежный контроль - контрольная работа.

Модуль 2. Биологические важные классы органических соединений.

2.1. Характеристика классов: спирты, фенолы

- 2.1.1. Одноатомные спирты: определение, строение, физические и химические свойства. Изомерия и номенклатура. Отдельные представители: метанол, этанол. Применение в медицине.
- 2.1.2. Многоатомные спирты: определение, физические и химические свойства. Изомерия и номенклатура. Отдельные представители: этиленгликоль, глицерин, миоинозит, ксилит, сорбит. Применение в медицине.
- 2.1.3. Определение фенолов. Классификация по числу ОН-групп: одноатомные фенолы (аренолы), двухатомные фенолы (арендиолы), трёхатомные фенолы (арентриолы). Строение. Физические и химические свойства. Изомерия и номенклатура. Отдельные представители двухатомных фенолов: гидрохинон, пирокатехин, резорцин. Применение в медицине.

2.2. Характеристика классов: альдегиды, кетоны

2.2.1. Определение, строение, физические и химические свойства. Изомерия и номенклатура. Отдельные представители: формальдегид, ацетальдегид, ацетон. Применение в медицине.

2.3 Карбоновые кислоты и их производные

- 2.3.1 Определение. Номенклатура и изомерия. Классификация в зависимости от радикала, связанного с карбоксилом и по числу карбоксильных групп кислоты. Физические и химические свойства. Отдельные представители и их биологическое значение.
- 2.3.2. Монокарбоновые. Насыщенные: муравьиная, уксусная, масляная; высокомолекулярные представители пальмитиновая, стеариновая. Ненасыщенные: акриловая, высокомолекулярные представители олеиновая, линолевая, арахидоновая.
- 2.3.3. Дикарбоновые. Насыщенные: щавелевая, малоновая, янтарная, глутаровая, фумаровая. Ненасыщенные: бутендиовая (цис-транс изомеры бутендиовой кислоты). Лимонная кислота: определение, применение в медицине, влияние на здоровье.

2.4 Углеводы. Моносахариды

- 2.4.1 Определение. Строение. Классификация. Изомерия.
- 2.4.2. Моносахариды: определение, свойства. Представители: глюкоза, фруктоза, галактоза, манноза. Применение в медицине.
- 2.4.3. Образование О-гликозидов; N-гликозидов; простых эфиров; сложных эфиров с ангидридами кислот и минеральными кислотами (фосфорной кислотой).
- 2.4.4. Восстановление моносахаридов (сахарные спирты). Окисление моносахаридов (образование гликаровых кислот, гликоновых кислот и уроновых кислот). Качественные реакции на моносахариды.

2.5 Дисахариды. Полисахариды.

- 2.5.1. Дисахариды: определение, свойства. Представители: сахароза (обычный сахар, тростниковый или свекловичный), мальтоза, лактоза, целобиоза. Цикло-оксо-таутомерия. Мутаротация. Гидролиз. Применение в медицине.
- 2.5.2. Полисахариды: определение, свойства. Представители: декстраны, гликоген, крахмал, амилопектин, амилоза, целлюлоза, гипарин, хондроитинсульфаты. Применение в медицине.

2.6 α-Аминокислоты.

2.6.1. Классификации аминокислот. Аминокислоты: нейтральные, кислые, основные. Изоэлектрическая точка и изоэлектрическое состояние аминокислот.

Амфотерные свойства аминокислот: взаимодействие с сильными кислотами и щелочами.

- 2.6.2. Специфические реакции аминокислот; их биологическое значение или аналитическое использование: декарбоксилирование; трансаминирование; дезаминирование (окислительное, неокислительное, с участием азотистой кислоты); взаимодействие с формалином (метод формольного титрования); взаимодействие с гидроксидом меди (II) с образованием хелатного комплекса. Особенности химических свойств α -, β -, γ аминокислот.
- 2.6.3. Первичная структура, связи ее стабилизирующие, N— и С— конец молекулы пептида. Вторичная, третичная и четвертичная структура белка.

Рубежный контроль - контрольная работа.

2. Учебно-тематический план дисциплины (в академических часах) и матрица компетенций

	Контактная работа обучающихся с преподавателем		Всего	Самостоятель ная работа	Итог	Формир уемые компете нции		Формы текущего,		
Коды (номера) модулей (разделов) дисциплины и тем	лекции	лабораторные практикумы	зачет	на контакт ную работу	контакт ную	студента, включая подготовку к экзамену (зачету)	очасов	ОПК-2	тельные технолог ии, способы и методы обучения	в т.ч. рубежного контроля успеваемо сти
1	2	3	4	5	6	7	9	10	11	
1.	2	8		10	10	20	X			
1.1.	2	4			5		X	ЛВ,МГ, ЛП	Т,3С,С	
1.2.		4			5		X	МГ, ЛП	Т,3С, С, КР	
2.	12	18		30	22	52		-		
2.1	2	4			4		X	ЛВ,МГ,Р	C,P	
2.2	2	2			4		X	ЛВ,МГ,Р	С, Р, Д	
2.3	2	4			4		X	ЛВ,МГ,Р	С	
2.4	2	2			4		X	ЛВ,МГ, Р, МК	C, P	
2.5	2	4			3		X	ЛВ,МГ	3C,C	
2.6	2	2			3		X	ЛВ,МГ	3C,C, KP	
Зачет										
ИТОГО:	14	26		40	32	72				

Список сокращений (*образовательные технологий*, *способы и методы обучения*) лекция-визуализация (ЛВ), метод малых групп (МГ), лабораторный практикум (ЛП), учебно-исследовательская работа студента (УИРС), мастер-класс(МК).

Формы текущего и рубежного контроля успеваемости: T — тестирование, 3C — решение ситуационных задач, KP — контрольная работа, P — написание и защита реферата, C — собеседование по контрольным вопросам, \mathcal{I} — подготовка доклада и др.

III. Фонд оценочных средств для контроля уровня сформированности компетенций (Приложение № 1)

Оценочные средства для текущего, в т.ч. рубежного контроля успеваемости

Примеры заданий в тестовой форме

1. Молярная концентрация рассчитывается по формуле

1)
$$C_m = \frac{n_{\text{(B-Ba)}}}{m_{\text{(р-теля)}}} = \frac{m_{\text{(B-Ba)}}}{M_{\text{(B-Ba)}} \cdot m_{\text{(р-теля)}}}, [\text{моль/кг}]$$

2)
$$C_m = \frac{m_{\text{(B-Ba)}} \cdot 1000}{M_{\text{(B-Ba)}} \cdot m_{\text{(p-Tens)}}}, [\text{моль/кг}]$$

3)
$$C = \frac{n_{(B-Ba)}}{V_{(p-pa)}} = \frac{m_{(B-Ba)}}{M_{(B-Ba)} \cdot V_{(p-pa)}}, [\text{моль/л}]$$

4)
$$C_{\mathfrak{p}} = \frac{n_{\mathfrak{p}}^{(\text{B-Ba})}}{V(p-pa)} = \frac{m_{(\text{B-Ba})}}{M_{\mathfrak{p}}^{(\text{B-Ba})} \cdot V(p-pa)}, [$$
моль/л $]$

Ответ: 3

Обоснование: молярная концентрация эквивалента — это отношение количества эквивалента растворенного вещества к объему раствора

2. Молярная концентрация эквивалента рассчитывается по формуле

1)
$$C_m = \frac{n_{(B-Ba)}}{m_{(p-Tеля)}} = \frac{m_{(B-Ba)}}{V_{(B-Ba)} \cdot m_{(p-Tеля)}}, [MOJIE/KF]$$

2)
$$C_m = \frac{m_{(B-Ba)}\cdot 1000}{M_{(B-Ba)}\cdot m_{(p-Tеля)}}, [monb/kg]$$

3)
$$C = \frac{n(B-Ba)}{V(p-pa)} = \frac{m(B-Ba)}{M(B-Ba)\cdot V(p-pa)}, [MOЛЬ/Л]$$

4)
$$m{C}_{m{\jmath}} = rac{m{n_{m{\jmath}}}(ext{B-Ba})}{V(ext{p-pa})} = rac{m{m}(ext{B-Ba})}{m{M_{m{\jmath}}}(ext{B-Ba})V(ext{p-pa})}, [ext{моль/л}]$$

Ответ: 4

Обоснование: молярная концентрация эквивалента — это отношение количества эквивалента растворенного вещества к объему раствора

3. Моляльная концентрация рассчитывается по формуле

1)
$$C_m = \frac{n_{(B-Ba)}}{m_{(p-Tеля)}} = \frac{m_{(B-Ba)}}{V_{(B-Ba)} \cdot m_{(p-Tеля)}}, [monb/kr]$$

2)
$$C_m = \frac{m_{(B-Ba)}\cdot 1000}{M_{(B-Ba)}\cdot m_{(p-Tеля)}}, [monb/kr]$$

3)
$$C = \frac{n_{(B-Ba)}}{V_{(p-pa)}} = \frac{m_{(B-Ba)}}{M_{(B-Ba)} \cdot V_{(p-pa)}}, [MOЛЬ/Л]$$

$$C_9 = \frac{n_9(\text{B-Ba})}{V(\text{p-pa})} = \frac{m(\text{B-Ba})}{M_9(\text{B-Ba}) \cdot V(\text{p-pa})}, [\text{моль/л}]$$

Ответ: 1

Обоснование: моляльная концентрация — это отношение количества растворенного вещества к массе растворителя.

Примеры контрольных вопросов для собеседования:

- 1. Характеристика классов: спирты, фенолы.
- 2. Кислотные свойства спиртов и фенолов.
- 3. Реакции нуклеофильного замещения в ряду гидроксисоединений.
- 4. Реакции элиминирования (Е).
- 5. Окисление спиртов.
- 6. Фенолы одно-, двух- и трехатомные. Примеры и медико-биологическое значение.

Критерии оценки при собеседовании:

Оценка **«ОТЛИЧНО»** выставляется за полный и правильный ответ на вопрос. Допустимое число незначительных замечаний и недочетов — не более одного.

Оценка «**ХОРОШО**» выставляется за правильный, но недостаточно полный ответ на вопрос, при наличии 2 незначительных замечаний (недочетов).

Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется за неполный, неточный ответ на вопрос, при наличии одной грубой ошибки или 3-4 незначительных замечаний (недочетов).

Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется:

- 1) за полное отсутствие ответа на вопрос;
- 2) при наличии двух грубых ошибок или более пяти незначительных замечаний (недочетов);
 - 3) при обнаружении шпаргалок.

Примеры заданий для рубежного контроля:

- 1. Объясните электронное строение оксогруппы.
- 2. Приведите уравнение реакции взаимодействия бутанола-2 с бромоводородом. Назовите и напишите механизм реакции.
- 3. Напишите уравнение реакции восстановления пентанона-3. К какому классу органических веществ относится полученное соединение?
- 4. На примере пропанона напишите уравнение альдольной конденсации.
- 5. Образование ангидридов карбоновых кислот на примере уксусной кислоты.
- 6. Приведите уравнение реакции образование амида пропановой кислоты. Назовите и напишите механизм реакции.
- 7. Напишите уравнение реакции взаимодействия α-Д-галактопиранозы (формулой Xeyopca) с метиловым спиртом. К какому типу гликозидов относится полученное соединение?
- 8. Напишите уравнение реакции восстановление фруктозы.
- 9. На примере маннозы напишите уравнение реакции образования гликаровой кислоты, укажите условия.
- 10. Напишите уравнение гидролиза мальтозы, укажите условия.

Критерии оценок рубежного контроля:

За каждое правильно выполненное задание выставляется 0.5 баллов, если есть замечания, неточности -0 баллов. В соответствие с суммой набранных баллов:

- 4,5 5 оценка **«отлично»**
- 4 3,5 оценка **«хорошо»**
- 3 3,5 оценка **«удовлетворительно»**

меньше 3 баллов – оценка «неудовлетворительно»

Примеры ситуационных задач

1. Диаминомонокарбоновую кислоту поместили в раствор, содержащий избыток щелочи (pH>>7).

Вопрос: Будет ли эта аминокислота перемещаться в данном растворе при электрофорезе? Если да, то к (+) или (-) заряженному электроду? Ответ обоснуйте. Напишите форму аминокислоты, в которой она будет существовать в этом растворе.

Эталон решения: В водном растворе диаминомонокарбоновая кислота находиться в катионной форме, но при добавлении избытка шелочи к раствору кислоты, ее молекулы будут заряжаться отрицательно и при электрофорезе, перемещаться к положительно заряженному электроду.

$$H_2N-R-CH-COOH \xrightarrow{H_2O} + R-CH-COO \xrightarrow{OH-u3G}.$$
 $H_2N-R-CH-COO \xrightarrow{\bullet} + 2 H_2O$ NH_2 NH_3+ NH_2

2. В какой раствор, содержащий избыток щелочи или избыток сильной кислоты, надо поместить моноаминомонокарбоновую кислоту, чтобы при электрофорезе перемещалась к (-) заряженному электроду? Ответ обоснуйте. Напишите форму аминокислоты, в которой она будет существовать в выбранном растворе.

Эталон решения: Для того, что моноаминомонокарбоновая кислота перемещалась к отрицательно заряженному электроду, она должна находиться в катионной форме. Для этого кислоту необходимо поместить в кислую среду.

3. При добавлении капли раствора хлорида железа(III) к водному раствору ацетоуксусного эфира появляется фиолетовое окрашивание. После добавления бромной воды окраска исчезает, но через некоторое время появляется вновь. Повторное добавление бромной воды опять приводит к временному исчезновению окраски.

Вопрос: Объясните результаты опыта.

Эталон решения:

Ацетоуксусный эфир представляет смесь двух изомеров- кетона (92,5%) и енола (7,5%), находящихся в таутомерном равновесии:

Кетонная форма Енольная форма

При действии на ацетоуксусный эфир какого-либо реагента в реакцию вступает один из таутомеров. Ацетоуксусный эфир как еная дает с хлоридом железа (III) характерное фиолетовое окраишвание. Если к этому окрашенному раствору прибавить по каплям бром, то енальный таутомер, присоединяя бром по двойной связи, переходит в бромопроизводное и окраска исчезает. Однако через некоторое время окраска вновь появляется, т.к. нарушенное равновесие восстанавливается и кетонный таутомер частично переходит в енольную форму.

Критерии оценки при решении ситуационных задач:

Оценка «ОТЛИЧНО» выставляется за полное и правильное решение задачи.

Оценка **«ХОРОШО»** выставляется за наличие 1 грубой ошибки или 2 незначительных замечаний.

Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется за наличие двух грубых ошибок или пяти незначительных замечаний (недочетов).

Оценка **«НЕУДОВЛЕТВОРИТЕЛЬНО»** выставляется за полное отсутствие решения или наличие более 2 грубых ошибок или более 5 незначительных замечаний.

ТЕМЫ РЕФЕРАТИВНЫХ ДОКЛАДОВ

- 1. Биологические основы действия этанола. Эффекты острого и хронического отравления этанолом. Влияние этанола на мозг человека.
- 2. Основные понятия стереоизомерии карбоновых кислот.
- 3. Гиалуроновая кислота. Ее биологическое значение. Применение в дерматологии и косметологии.
- 4. Структуры белков, их денатурация, гидролиз.
- 5. Нарушение липидного обмена в этиологии атеросклероза.

Критерии оценки реферативных докладов:

Оценка «**ОТЛИЧНО**» выставляется за правильное и полное раскрытие темы реферата. При написании реферата необходимо использовать рекомендованную и дополнительную литературу.

Оценка **«ХОРОШО»** выставляется при недостаточном раскрытии темы реферата и использовании только рекомендованной литературы.

Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется за неполное, неточное раскрытие темы реферата и использование только Интернет-ресурсов.

Оценка «**НЕУДОВЛЕТВОРИТЕЛЬНО**» выставляется при невыполнении реферата.

Перечень практических навыков (умений), которые необходимо освоить студенту:

В процессе прохождения курса химии у студентов должны быть сформированы следующие навыки:

- 1. Самостоятельной работы с учебной, научной и справочной литературой; вести поиск и делать обобщающие выводы.
- 2. Безопасной работы в химической лаборатории и умение обращаться с химической посудой, реактивами, работать со спиртовками и электрическими приборами
- 3. Работы с пробирками и мерной посудой (пипетками, бюретками)
- 4. Проведения качественных реакций на функциональные группы и характерные структурные фрагменты молекул и идентификация отдельных представителей классов органических веществ с объяснением визуально наблюдаемого эффекта;
- 5. Написания структурных формул по названию и правильного названия по структурной формуле гетерофункциональных соединений на основе знания правил номенклатуры IU-PAC.
- 6. Выделения в молекуле органических соединений реакционных центров и прогнозирования свойств и их химического поведения в зависимости от условий и природы реагентов.

Критерии оценки выполнения практических навыков:

Освоение практических навыков обучающимся оценивается по результатам оформления лабораторного журнала по следующим критериям:

- Корректность выводов по результатам экспериментов
- Своевременность оформления
- Аккуратность

Фонды оценочных средств для проверки уровня сформированности компетенций по итогам освоения дисциплины для каждой формируемой компетенции создается в соответствии с образцом, приведенным в Приложении № 1.

IV. Учебно-методическое и информационное обеспечение дисциплины

- 1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины:
 - а). Основная литература:
 - **1.** Тюкавкина, Н.А. Биоорганическая химия [Электронный ресурс]: учебник / Н.А. Тюкавкина, Ю.И. Бауков, С.Э. Зурабян. М.:ГЭОТАР-Медиа , 2015 г.- 416с. http://www.studmedlib.ru/ru/book/ISBN9785970431887.html
 - **2.** Биоорганическая химия: руководство к практическим занятиям [Электронный ресурс] : учеб. пособие / под ред. Н.А. Тюкавкиной М. : ГЭОТАР-Медиа, 2016. 168 с. http://www.studmedlib.ru/ru/book/ISBN9785970438015.html

б). Дополнительная литература:

1. Попков, В.А Общая и биоорганическая химия [Текст] / Попков В.А, Берлянд А.С., Нестерова О.В. и др. — Academa., 2010 г.- 368 с.

в). Программное обеспечение и Интернет-ресурсы:

- 1. Электронная библиотека сайта «chemweek.ru»- http://www.chemweek.ru/books/
- 2. Электронная библиотека сайта «chemnet» http://www.Chem..msu.su/rus/elibrary/

2. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

1. Химия. Теоретический курс. Учебно-методическое пособие для подготовки к лабораторно-практическим занятиям и сессионному зачету

3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Профессиональные базы данных, информационные справочные системы и электронные образовательные ресурсы:

Электронный справочник «Информио» для высших учебных заведений (www.informuo.ru);

Электронный библиотечный абонемент Центральной научной медицинской библиотеки Первого Московского государственного медицинского университета им. И.М. Сеченова // http://www.emll.ru/newlib/;

Информационно-поисковая база Medline (http://www.ncbi.nlm.nin.gov/pubmed);

База данных «Российская медицина» (http://www.scsml.rssi.ru/)

Официальный сайт Министерства здравоохранения Российской Федерации // https://minzdrav.gov.ru/;

Российское образование. Федеральный образовательный портал. //http://www.edu.ru/; Клинические рекомендации: http://cr.rosminzdrav.ru/;

Электронный образовательный ресурс Web-медицина (http://webmed.irkutsk.ru/)

4. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

4.1. Перечень лицензионного программного обеспечения:

- 1. Microsoft Office 2016:
- Access 2016:
- Excel 2016;
- Outlook 2016;
- PowerPoint 2016;
- Word 2016;
- Publisher 2016;
- OneNote 2016.
- 2. ABBYY FineReader 11.0
- 3. Карельская Медицинская информационная система К-МИС
- 4 Программное обеспечение для тестирования обучающихся SunRAV TestOfficePro
- 5. Программное обеспечение «Среда электронного обучения 3KL»
- 6. Компьютерная программа для статистической обработки данных SPSS
- 7. Экспертная система обнаружения текстовых заимствований на базе искусственного интеллекта «Руконтекст»
- 8. Справочно-правовая система Консультант Плюс

4.2. Перечень электронно-библиотечных систем (ЭБС):

- 1. Электронно-библиотечная система «Консультант студента» (www.studmedlib.ru);
- 2. Справочно-информационная система MedBaseGeotar (mbasegeotar.ru)
- 3. Электронная библиотечная система «elibrary» (https://www.elibrary.ru/)

5. Методические указания для обучающихся по освоению дисциплины (приложение № 2).

1. Химия. Теоретический курс. Учебно-методическое пособие для подготовки к лабораторно-практическим занятиям и сессионному зачету

V. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (приложение № 2)

VI. Научно-исследовательская работа студента

При изучении дисциплины «Химия» используются следующие виды научноисследовательской работы студентов:

- 1. Изучение специальной литературы
- 2. Подготовка и выступление с докладом на конференции
- 3. Подготовка к публикации статьи, тезисов

Научные направления кружка СНО кафедры химии разнообразны. Направления теоретической секции включают в себя:

- рассмотрение биологических процессов, лекарств и методов лечения с химических позиций;
- изучение применения химических знаний в медицинской практике.

Научными направлениями экспериментальной секции являются:

- физико-химический анализ биологических сред;
- физико-химический анализ модельных растворов;
- изучение химических взаимодействий и свойств лекарственных препаратов.

VII. Сведения об обновлении рабочей программы дисциплины

Представлены в Приложении № 3

Фонды оценочных средств

для проверки уровня сформированности компетенций для промежуточной аттестации по итогам освоения дисциплины

ОПК-2 Способен решать профессиональные задачи с использованием основных физико-химических, математических и иных естественно-научных понятий и методов.

ИД_{ОПК-2} Демонстрирует умение решать профессиональные задачи с использованием основных физико-химических, математических и иных естественнонаучных понятий метолов.

ИД ОПК-2 Знать: основы строения атомов. Механизм образования химической связи; классификацию химических реакций, механизмы реакции в органической химии; роль биогенных элементов и их соединений в живых системах; свойства биополимеров; строение и свойства природных соединений; свойства и способы приготовления растворов. Уметь: пользоваться учебной, научной, научнопопулярной литературой, сетью Интернет для профессиональной деятельности. Владеть: навыками работы с химической посудой; навыками приготовления растворов различной концентрацией.

Задания комбинированного типа с выбором верного ответа и обоснованием выбора из предложенных

Выберите один или несколько правильных ответов

- 1. Для получения этилового эфира уксусной кислоты нужно взять
 - 1) метанол
 - 2) этановую кислоту
 - 3) пропановую кислоту
- 4) этанол

Ответ: 24

Обоснование: сложные эфиры образуются при взаимодействии карбоновых кислот со спиртами

- 2. Глюкоза является
 - 1) дисахаридом
 - 2) гомополисахаридом
 - 3) моносахаридом
 - 4) гетерополисахаридом

Ответ: 3

Обоснование: глюкоза является моносахаридом, так как не способна гидролизоваться с образованием более простых углеводов

- 3. К дикарбоновым кислотам относят:
 - 1) бутановую кислоту
 - 2) бутандиаль
 - 3) пропандиовую кислоту
 - 4) метановую кислоту

Ответ: 3

Обоснование: дикарбоновые кислоты — это двухосновные карбоновые кислоты, что в названии отражается в окончании «-диовая...»

Задания открытой формы

задания открытои формы				
Напишите формулы следующих соединений:				
1. бутанол-2	2. формальдегид			
3. малоновая кислота	4. ү-аминомасляная кислота			
5. этандиамин-1,2	6. хинон			
7. малеиновая кислота				
8. Выбрав необходимые радикалы: HS-CH2	-; H ₃ C-; HO-CH ₂ -;			
НООС-СН2-; Н-; НО-СН2-, напишите	строение трипептида			
АСП-ГЛИ-ЦИС:				
9. α-Д-фруктофураноза	10. ксилит			

11. дезоксицитидин	12. фосфатидилсерин
13. 1-пальмитоил-2-линолеоил-	14. биозный фрагмент
-глицерин	целлюлозы
15. сульфаниловая кислота	16. аденозин-5'-дифосфат

- 17. Приведите уравнение реакции и опишите механизм альдольной конденсации на примере пропаналя.
- 18. На конкретном примере напишите уравнение реакции окисления первичного спирта.
- 19. Напишите уравнение реакции дегидратации альфа-аминокислоты.

Контрольные вопросы

- 1. Вторичная структура ДНК. Комплиментарность нуклеиновых оснований. Роль водородных связей в формировании вторичной структуры ДНК.
- 2. Классификация карбоновых кислот.
- 3. Углеводы и их биологическая роль.

Задания закрытого типа на установление соответствия

задания закрытого гипа	а на установление соответствия			
1. Установите соответствие между веществом и классом соединения				
1) молочная кислота	А) высшая карбоновая кислота			
2) глутаминовая кислота	Б) оксокислота			
3) α-кетоглутаровая кислота	В) гидроксикислота			
4) олеиновая кислота	Г) аминокислота			

Ответ: 1В 2Г 3Б 4А

2. Установите соответствие между реакцией и механизмом, по которому она протекает

1) $CH_4 + Cl_2 \rightarrow$

А) нуклеофильное замещение

2) $CH_3COOH + PCl_5 \rightarrow$

Б) радикальное присоединение

3) $C_2H_4 + Cl_2 \rightarrow$

В) электрофильное присоединение

4) циклопропан + $Cl_2 \rightarrow$

Г) радикальное замещение

Ответ: 1Г 2А 3В 4Б

3. Установите соответствие между веществом и областью его применения

1) фенол

А) местный анестетик

2) стрептоцид

Б) жаропонижающее средство

3) аспирин

В) антисептик

4) новокаин

Г) противомикробное средство

Ответ: 1В 2Г 3Б 4А

Задания закрытого типа на установление последовательности

Задание 1

Прочитайте текст и установите последовательность

Реакция метана с хлором на свету включает в себя следующие этапы:

- 1) атака молекулы хлора метильным радикалом с образованием хлорметана и радикала хлора
- 2) соединение между собой двух любых радикалов
- 3) атака метана радикалом хлора с образованием метильного радикала и HCl
- 4) образование свободных радикалов хлора под действием УФ-излучения

Ответ: 4312

Задание 2

Прочитайте текст и установите последовательность

Реакция толуола с хлором в присутствии катализатора – хлорида железа (III), включает в

себя следующие этапы:

1) соединение нуклеофильной частицы с протоном водорода

2) присоединение электрофильной частицы к бензольному ядру с образованием о-

комплекса

3) образование электрофильной и нуклеофильной частиц под действием катализатора

4) отщепление протона водорода от бензольного ядра, восстановление ароматичности

5) атака бензольного ядра электрофильной частицей с образованием π -комплекса

Ответ: 35241

Задание 3

Прочитайте текст и установите последовательность

Реакция циановодородной кислоты с уксусным альдегидом включает в себя следующие

этапы:

1) образование карбаниона

2) присоединение водорода к кислороду

3) присоединение нуклеофильной частицы к углероду в карбонильной группе

4) образование нуклеофильной и электрофильной частиц под действием катализатора

Ответ: 4312

Практико-ориентированные задания

Задание 1

В медицине до середины XX века в качестве антисептического и дезинфицирующего

средства использовали карболовую кислоту.

1. Приведите химическое название карболовой кислоты

2. Напишите реакцию, характеризующую кислотные свойства карболовой кислоты

Эталон ответа:

1. Фенол

OH ONa
$$+ \text{NaOH}$$
 $+ \text{H}_2\text{O}$

Задание 2

При взаимодействии глюкозы с водородом в присутствии катализатора образовалось вещество со сладким вкусом, вступающее в реакцию гидроксидом меди (II)

- 1. Напишите формулу и химическое название полученного вещества
- 2. Напишите уравнение реакции полученного вещества с гидроксидом меди (II)

Эталон ответа:

 H_2C —OH

$$H \longrightarrow OH$$
 $H \longrightarrow OH$
 $H \longrightarrow OH$

Задание 3

Попадание в организм человека метанола смертельно опасно из-за его метаболизма, в результате которого образуется вещество кислой природы.

- 1. Какие продукты метаболизма метанола имеют токсический эффект?
- 2. Какое вещество является антидотом для метанола?

Эталон ответа:

- 1. Формальдегид и муравьиная кислота
- 2. Этанол

Ситуационные задачи

1. В какой раствор, содержащий избыток щелочи или избыток сильной кислоты, надо поместить моноаминодикарбоновую кислоту, чтобы при электрофорезе она перемещалась к (+) заряженному электроду? Ответ обоснуйте. Напишите форму аминокислоты, в которой она будет существовать в выбранном растворе.

Ответ: Для того, что моноаминодикарбоновая кислота перемещалась к положительно заряженному электроду, она должна находиться в анионной форме. Для этого кислоту необходимо поместить в раствор, содержащий избыток щелочи.

2. В какой раствор, содержащий избыток щелочи или избыток сильной кислоты, надо поместить диаминомонокарбоновую кислоту, чтобы при электрофорезе она перемещалась к (+) заряженному электроду? Ответ обоснуйте. Напишите форму аминокислоты, в которой она будет существовать в выбранном растворе.

Ответ: Для того, что диаминомонокарбоновая кислота перемещалась к положительно заряженному электроду, она должна находиться в анионной форме. Для этого кислоту необходимо поместить в раствор, содержащий избыток щелочи.

3. В какой раствор, содержащий избыток щелочи или избыток сильной кислоты, надо поместить моноаминомонокарбоновую кислоту, чтобы при электрофорезе она перемещалась к (-) заряженному электроду? Ответ обоснуйте. Напишите форму аминокислоты, в которой она будет существовать в выбранном растворе.

Ответ: Для того, что моноаминомонокарбоновая кислота перемещалась к отрицательно заряженному электроду, она должна находиться в катионной форме. Для этого кислоту необходимо поместить в раствор, содержащий избыток кислоты.

Справка о материально-техническом обеспечении рабочей программы дисциплины

«Химия»

$N_{\underline{0}}$	Наименование специальных	Оснащённость специальных помещений
__	помещений и помещений для	и помещений для самостоятельной
п/п	самостоятельной работы	работы
1	316	Баннерный стенд «периодическая таблица Менделеева»(1 шт.),
		Баня лаб.комбинир БКЛ(1 шт.),
		Весы лабораторные Ohaus (1 шт.), Иономер лабор И160 МИ (1 шт.), Колориметр КФК-2 (1 шт.),
		Мобильная стойка для LCD (1 шт.), Облучатель-рециркулятор воздуха ультрафиолетовый бактерицидный (1 шт.),
		Плита электр.наст. Energi EN-901B (1 шт.),
		Стол антивибрационный весовой СОВЛАБ (1 шт.),
		Стол лабораторный высокий СОВЛАБ 1000,1200 (1 шт.),
		Стол остр.физический СОВЛАБ 1200 Офкл (6 шт.),
		Стол рабочий однотумбовый (6 шт.), Столы палаточные (1 шт.),
		Стул см-12 (5 шт.),
		Табурет промышленный винтовой с круглым сидением (24 шт.),
		Телевизор LED TLC 55C715 серый (1 шт.),
		Термостат (1 шт.)
		Тумба под мойку 50*60 бук (2 шт.)
		Шкаф вытяжной Mod 1200 (1 шт.)

		Шкаф для приборов СОВЛАБ 400,800 (3 шт.)
		Шкаф сушильный (1 шт.)
		Шкаф ШС-80/сухожаровой/ (1 шт.)
2	318	Баннерный стенд «периодическая таблица Менделеева» (1 шт.)
		Весы лабораторные AND HL 100 (1 шт.)
		Доска передвижная ДП-12 (1 шт.)
		Колориметр КФК-2 (1 шт.)
		Колориметр фотоэлектрический концентрационный КФК-2 (1 шт.)
		Облучатель-рециркулятор воздуха ультрафиолетовый бактерицидный (1 шт.)
		Плита электр.наст. Energi EN-901B (1 шт.)
		Столы палаточные (1 шт.)
		Столы хтз (9 шт.)
		Стул см-12 (5 шт.)
		Табурет (14 шт.)
		Тумба под мойку 50*60 бук (1 шт.)
		Шкаф вытяжной (1 шт.)
		Шкаф сушильный (1 шт.)
3	320	Баннерный стенд «периодическая таблица Менделеева» (1 шт.)
		Баня лаб.комбинир БКЛ(1 шт.)
		Весы аналитические(2 шт.)
		Весы аналитические Gibertini (1 шт.)
		Колориметр КФК-2 (1 шт.)
		Камера хроматографическая под пластины (1 шт.)

		КФК-2-колориметр фотоэлектрический (1 шт.)
		Облучатель-рециркулятор воздуха ультрафиолетовый бактерицидный (1 шт.)
		Плита электр.наст. Energi EN-901B (1 шт.)
		РН-метр Гомель (1 шт.)
		Стол лабораторный высокий СОВЛАБ 1000,1200 (2 шт.)
		Стол остр.физический СОВЛАБ 1200 Офкл (6 шт.)
		Табурет промышленный винтовой с круглым сидением (24 шт.)
		Тумба под мойку 50*60 бук (2 шт.)
		Шкаф вытяжной Mod 1200 (1 шт.)
		Шкаф для приборов СОВЛАБ 400,800 (6 шт.)
4	322	Баннерный стенд «периодическая таблица Менделеева»(1 шт.)
		Весы технические (1 шт.)
		Доска магнитно-меловая(1 шт.)
		Колориметр КФК-2 (1 шт.)
		Облучатель-рециркулятор воздуха ультрафиолетовый бактерицидный (1 шт.)
		Плитка эл. Мечта (1 шт.)
		Столы лабор (1 шт.)
		Стол палаточный (1 шт.)
		Столы хтз (10 шт.)
		Табурет (14 шт.)
1		

Шкаф вытяжной (1 шт.)
э/плита (1 шт.)

Лист регистрации изменений и дополнений на ______ учебный год в рабочую программу дисциплины (модуля, практики)

(название ді	исциплины, м	одуля	, практики)	
для обучак	ощихся		курса,	
специальность (направление подготов				-
	(название	г спеці	<i>иальности, направлен</i> и	ия подготовки)
форма обучения: очная/заочная				
Изменения и дополнения в рабочую	программу д	исцип	лины рассмотрены на	ı
заседании кафедры «»		_ 20	_ г. (протокол №)
Зав. кафедрой	(ФИО)			
подпись	\			
поописо				

Содержание изменений и дополнений

$N_{\overline{0}}$	1	Старый текст	Новый текст	Комментарий		
Π/Π	страницы, абзац					
	Примеры:					
1						
2						
3						