Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный медицинский университет» Министерства здравоохранения Российской Федерации

Кафедра медицинской биофизики

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физика, математика

для студентов 1 курса,

направление подготовки (специальность) 34.03.01 Сестринское дело,

форма обучения очная

Трудоемкость, зачетные единицы/ часы	2 <i>3.e.</i> / 72 <i>4</i> .
в том числе:	
контактная работа	52 ч.
самостоятельная работа	20 ч.
Промежуточная аттестация, форма/семестр	Зачет / 1

І. Разработчики:

Доцент кафедры медицинской биофизики, кандидат физико-математических наук Корпусов О.М.

Рецензия дана заведующая кафедрой медицинских информационных технологий и организации здравоохранения ФГБОУ ВО Тверской ГМУ Минздрава России кандидатом медицинских наук, доцентом Соловьёвой А.В.

Рабочая программа рассмотрена и одобрена на заседании кафедры 2 февраля 2023 г. (протокол № 6)

Рабочая программа рассмотрена и одобрена на заседании профильного методического совета 22 мая 2023 г. (протокол № 5)

Рабочая программа утверждена на заседании Центрального координационнометодического совета 28 августа 2023 г (протокол №1)

II. Пояснительная записка

Рабочая программа дисциплины разработана в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки (специальности) сестринское дело, с учётом рекомендаций основной профессиональной образовательной программы (ОПОП) высшего образования.

1. Цель и задачи дисциплины

Целью освоения дисциплины является формирование у обучающихся общепрофессиональных компетенций для оказания квалифицированной медицинской помощи в соответствии с федеральным государственным образовательным стандартом.

Задачами освоения дисциплины являются: анализ научной литературы и официальных статистических обзоров, участие в проведении статистического анализа и публичное представление полученных результатов; участие в решении отдельных научно-исследовательских и научно-прикладных задач в области здравоохранения по диагностике, лечению, медицинской реабилитации и профилактике.

2. Планируемые результаты обучения по дисциплине

Формируемые	Индикатор	Планируемые результаты обучения
компетенции	достижения	В результате изучения дисциплины студент
	A • • • • • • • • • • • • • • • • • • •	должен:
ОПК-2	Б.ОПК-2.1 Де-	Знать:
Способен решать профессиональные задачи с использованием основных физико-химических, математических и иных естественнонаучных понятий и методов	монстрирует умение решать профессиональные задачи с использованием основных физикохимических, математических и иных естественнонаучных понятий и методов.	 значение математики в профессиональной деятельности основные математические методы решения прикладных задач в области профессиональной деятельности основы дифференциального и интегрального исчисления, основные понятия теории вероятностей и математической статистики, Уметь: решать прикладные задачи в области профессиональной деятельности, решать простейшие дифференциальные уравнения, определять точечные и интервальные оценки параметров генеральной совокупности по выборке решать медико-биологические задачи с применением вероятностных методов

3. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина «Математика» входит в Обязательную часть Блока Б1.Б ОПОП бакалавриата «сестринское дело». Содержательно она закладывает основы знаний и практических умений для математических методов в терапевтической и диагностической практике.

Учебная дисциплина «Физика, математика» помогает чётко описывать закономерности явлений, происходящих в живом организме, использовать количественные методы для решения практических задач в области здравоохранения. В процессе изучения дисциплины «Физика,

математика» расширяются знания и компетенции для успешной профессиональной деятельности бакалавра по специальности «Сестринское дело»

Уровень начальной подготовки обучающегося для успешного освоения дисциплины основывается на программе средней школы по физике и математике.

Освоение дисциплины «Физика, математика» необходимо как предшествующее для следующих дисциплин:

- 1) Медицинская статистика
- **4. Объём дисциплины** составляет 2 зачетных единицы, 72 академических часа, в том числе 52 часов, выделенных на контактную работу обучающихся с преподавателем и 20 часов самостоятельной работы обучающихся.

5. Образовательные технологии

В процессе освоения дисциплины используются следующие образовательные технологии, способы и методы формирования компетенций: лекция-визуализация, традиционная лекция, практические занятия с решением задач, работа с математической компьютерной программой, участие в научно-практических конференциях, учебно-исследовательская работа студентов, использование компьютерных математических моделей.

Элементы, входящие в самостоятельную работу студента: подготовка к семинарским и практическим занятиям, работа с Интернет-ресурсами, работа с компьютерными кафедральными программами, самостоятельное освоение разделов.

6. Формы промежуточной аттестации

<u>Промежуточная аттестация</u> – в I семестре проводится зачёт с использованием балльнонакопительной системы

Ш. Учебная программа дисциплины

1. Содержание дисциплины

МОДУЛЬ 1. Математика

ТЕМА 1. Теория вероятностей

Элементы теории вероятностей. Случайное событие. Вероятность случайного события. Отношения между событиями. Алгебра событий. Вероятность суммы и произведения событий. Случайные величины. Распределение дискретных и непрерывных случайных величин, и их характеристики. Нормальный закон распределения. Системы случайных величин

ТЕМА 2. Элементы математической статистики

Математическая статистика. Задачи математической статистики. Генеральная и выборочная совокупности. Репрезентативность выборки. Статистическое распределение выборки, дискретные и интервальные вариационные ряды. Полигон. Гистограмма. Оценки характеристик распределения по данным выборки. Точечные оценки параметров распределения. Генеральная средняя и выборочная средняя. Генеральная дисперсия

Доверительный интервал и доверительная вероятность. Нахождение границ доверительного интервала для оценки математического ожидания нормально распределенной случайной величины по данным выборки малого объема. Распределение Стъюдента.

ТЕМА 3. Корреляционный и регрессионный анализ.

Функциональная корреляционная зависимости. Коэффициент линейной корреляции и его свойства. Уравнение линейной регрессии.

МОДУЛЬ 2. ФИЗИКА

ТЕМА 4. Механика. Акустика

4.1. Течение и свойства жидкостей.

Вязкость жидкости. Течение вязкой жидкости по трубам. Методы определения вязкости жидкостей. Виды течения жидкостей. Поверхностное натяжение жидкости. Капиллярные явления.

4.2. Колебания.

Виды колебаний: свободные (затухающие и незатухающие), вынужденные и автоколебания. Уравнения колебаний. Сложное колебание и его гармонический спектр. Механические волны. Эффект Доплера. Ударные волны.

4.3. Звук. Ультразвук. Инфразвук.

Физические характеристики звука и их связь с характеристиками слухового ощущения, аудиометрия, звуковые методы исследования, применяемые в клинике. Воздействие ультразвука на биологические ткани и особенности его распространения в них; ультразвуковые методы исследования. Инфразвук и его действие на человека.

ТЕМА 5. Процессы переноса в биологических системах. Гемодинамика

Основные закономерности течения вязких жидкостей применительно к основным компонентам крови. Физические основы клинического метода измерения давления крови (Короткова). Приборы для измерения давления крови и скорости кровотока.

TEMA 6. Биоэлектрогенез. Электрические и магнитные свойства тканей и окружающей среды. Электромагнитные колебания и волны

6.1. Активный и пассивный транспорт.

Разновидности пассивного переноса молекул и ионов через мембраны. Активный транспорт.

6.2. Биоэлектрические потенциалы.

Представление об эквивалентном электрическом генераторе органов и тканей. Физические основы электрографии тканей и органов.

6.3. Электропроводимость биологических тканей.

Электропроводимость биологических тканей и жидкостей для постоянного тока. Переменный ток. Импеданс тканей организма.

6.4. Высокочастотные электрические поля и токи.

Физические процессы, происходящие в тканях организма под воздействием высокочастотного тока (дарсонвализация и электрохирургия), переменного магнитного поля высокой и ультравысокой частоты (индуктотермия), электрического поля ультравысокой частоты (индуктотермия), электрического поля ультравысокой частоты (УВЧ-терапия), электромагнитных волн сверхвысокочастотного (микроволновая терапия и ДЦВ-терапия) и крайневысокочастотного диапазонов (КВЧ-терапия).

6.5. Магнитное поле.

Магнитные свойства вещества. Магнитодиагностика. Понятие о магнитобиологии и биомагнетизме.

ТЕМА 7. Медицинская аппаратура

Физические основы диагностических методов исследования.

Реография, ЭКГ. Физические основы применения физиотерапевтических аппаратов «Тонус», «Амплипульс», «Искра», «Электросон», «Поток» и т.д. Классификация медицинской техники, способы обеспечения безопасности и надёжности медицинской аппаратуры.

ТЕМА 8. Оптика. Физика атомов и молекул

8.1.Элементы геометрической оптики.

Интерференция света. Дифракция. Понятие о голографии. Поляризация света. Специальные приёмы микроскопии.

8.2. Тепловое излучение тел.

Инфракрасное и ультрафиолетовое излучения и их применение в медицине.

8.3. Квантовая оптика.

Рассеяние, поглощение света. Люминесценция. Основные свойства лазерного излучения. Применение лазеров.

ТЕМА 9. Ионизирующее излучение. Дозиметрия

Виды ионизирующего излучения. Рентгеновское излучение. Радиоактивный распад. Взаимодействие ионизирующего излучения с веществом. Детекторы ионизирующего излучения. Биофизические основы действия ионизирующих излучений на организм. Физические основы применения ионизирующих излучений в медицине. Дозиметрия ионизирующего излучения.

2. Учебно-тематический план дисциплины (в академических часах) и матрица компетенций*

		онтактн чающих дават	кся с пр		Всего	Само- стоя- тельная Итого работа часов студен- та		Формируемые компетенции		_
Коды (номера) модулей (разделов) дисциплины и тем	лекции	лабораторные практикумы	практические за- нятия,	экзамен/зачет	часов на ауди- торную работу			ОПК-2	Используемые образовательные технологии, способы и методы обучения	Формы те- кущего и ру- бежного кон- троля успе- ваемости
 Модуль Математика 										
1.	2		6		8	2	10	X	Л, Б	Пр
2.	2		6		8	2	10	X	Л	Пр
3.	1		4		5	1	6	X	Л, КММ	Пр, КР
II. Модуль Физика										
4.	2				2	1	3			
4.1		2			2	1	3	X	Л, ЛВ, УФ, УИРС	Пр, Т, С, ЗС
4.2.								X	Л, ЛВ, УФ, УИРС	Пр, Т, С
4.3		2			2	1	3	X	Л, ЛВ, УФ, УИРС	Пр, Т, С
5	2	2			4	2	6	X	УИРС	Пр, Т, С, ЗС
6.	2				2	1	3	X		
6.1						1	1	X	УИРС	Р, Д
6.2		2			2	1	3	X	УИРС	Р, Д
6.3		2			2	1	3	X	Л, ЛВ, УФ, УИРС	Пр, Т, С, 3С
6.4		2			2	1	3	X	Л, ЛВ, УФ, УИРС	Пр, Т, С, 3С
6.5								X	УИРС	Р, Д
7.	1	2			3	2	5	X	Л, ЛВ, УФ, УИРС, НПК	Пр, Т, С, 3С НПК
8	1				1		1	X		
8.1.		2			2	1	3	X	УИРС	Пр, Т, С

8.2								X	УИРС	Р, Д
8.3.								X	УИРС	Р, Д
9.	1	2			3	1	4	X	Л, ЛВ, УФ, УИРС	Пр, Т, С
10.	2				2	1	3	X	Л,УИРС,НПК	Т,Р,Д
Зачёт				2	2		2			
итого:	16	18	16	2	52	20	72			

Список сокращений: традиционная лекция (Л), лекция-визуализация (ЛВ), учебно-исследовательская работа студента (УИРС), участие в научно-практических конференциях (НПК), УФ – учебный видеофильм.

Примерные формы текущего, в т.ч. рубежного контроля успеваемости (с сокращениями): T — тестирование, Πp — оценка освоения практических навыков (умений), 3C — решение ситуационных задач, KP — контрольная работа, K3 — контрольное задание, P — написание и защита реферата, C — собеседование по контрольным вопросам, \mathcal{A} — подготовка доклада и др. Примерные формы текущего, в т.ч. рубежного контроля успеваемости (с сокращениями): T — тестирование, Πp — оценка освоения практических навыков (умений), 3C — решение ситуационных задач, KP — контрольная работа, K3 — контрольное задание, M5 — написание и защита истории болезни, KJ — написание и защита кураторского листа, P — написание и защита реферата, C — собеседование по контрольным вопросам, \mathcal{A} — подготовка доклада и др.

IV. Фонд оценочных средств для контроля уровня сформированности компетенций (Приложение № 1)

1. Оценочные средства для текущего, в т.ч. рубежного контроля успеваемости

Оценка уровня сформированности компетенций осуществляется в процессе следующих форм контроля:

- Текущего проводится оценка выполнения студентами заданий в ходе аудиторных занятий в виде решения типовых и ситуационных задач, оценки овладения практическими умениями, собеседования по контрольным вопросам.
 - Рубежного:
- 1. Модуль «Математика» заканчивается программным тестовым контролем на компьютере и рубежным контролем в виде типовых и ситуационных задач.
- Модуль «Физика» заканчивается программным тестовым контролем на компьютере.

Оценивается самостоятельная работа студентов: подготовленный тематический реферат или доклад по пройденной теме.

• Итогового:

Зачёт проводится в конце I семестра и включает в себя контроль теоретических знаний путём решения заданий в тестовой форме, решения ситуационных задач по теории вероятности, математической статистике и физике, проверку практических навыков работы с двумя приборами из лабораторного практикума (см. Приложение 5. Бально-накопительная система оценивания).

1. Оценочные средства для текущего и рубежного контроля успеваемости по модулю «Математика»

Примеры ситуационных задач к практическим занятиям по темам 1-3

- Кубик бросают два раза. Построить закон распределения для суммы очков. Найти математическое ожидание, дисперсию, среднеквадратическое отклонение.
- Дана выборка: 7, 6, 6, 2, 4, 5, 5, 3, 2, 4, 5, 6, 5, 4, 2, 3, 3. Построить статистический дискретный ряд, полигон относительных частот; найти выборочное среднее и выборочное среднеквадратическое отклонение.
- 3) У собак короткая шерсть доминирует над длинной. Получен помёт в 3 щенка от короткошерстных самца и самки (гетерозиготных по признаку). Построить ряд распределения для числа длинношерстных щенков в помёте. Найти математическое ожидание числа длинношерстных щенков в помёте.

Примеры заданий в тестовой форме к рубежному контролю по модулю «Математика»

- 1. Формула классического определения вероятности случайного события А (побщее число исходов, т-число благоприятных исходов для события А).

 - 1) $P(A) = \frac{n}{m}$ 2) $P(A) = \lim_{n \to \infty} \frac{m}{n}$

3)
$$P(A) = \frac{m}{n}$$

3)
$$P(A) = \frac{m}{n}$$

4) $P(A) = \lim_{n \to 0} \frac{m}{n}$

2. События называют совместными, если:

- 1) наступление одного из событий в одном опыте не исключает появление другого
- 2) наступление одного из них в одном опыте обязательно сопровождается наступлением другого
- 3) в условиях опыта произойдут только эти события и никакие другие
- 4) если события не могут произойти одновременно в условиях данного опыта

3. События называют единственно возможными:

- 1) если в условиях данного опыта произойдут только эти события и никакие другие
- 2) если наступление одного из событий в одном опыте исключает появление другого
- 3) если события не могут произойти одновременно в условиях данного опыта
- 4) наступление одного из событий в одном опыте не исключает появление другого

4. Статистическая вероятность события численно равна (п-общее число исходов, тчисло исходов для события А):

1)
$$P(A) = \frac{n}{m}$$

$$2) \quad P(A) = \lim_{n \to \infty} \frac{m}{n}$$

3)
$$P(A) = \frac{m}{n}$$

3)
$$P(A) = \frac{m}{n}$$

4) $P(A) = \lim_{n \to 0} \frac{m}{n}$

5. Суммой двух событий А и В является событие С, которое заключается:

- 1) в появлении либо события А, либо события В
- 2) в одновременном появлении событий А и В
- 3) в исключении события А и события В
- 4) в непоявлении события А и появлении события В

6. Произведением двух событий А и В является событие С, которое заключается:

- 1) в исключении события А и события В
- 2) в появлении либо события А, либо события В
- 3) в одновременном появлении событий А и В
- 4) в непоявлении события А и появлении события В

7. Вероятность суммы двух совместимых событий равна:

- 1) P(A или B) = P(A) + P(B) P(A и B)
- 2) P(A или B) = P(A) + P(B) + P(A и B)
- 3) P(A или B) = P(A) + P(B)
- 4) P(A или B) = P(A) + P(B) * P(B/A)

8. Вероятность суммы двух несовместимых событий равна:

- 1) P(A или B) = P(A) + P(B) P(A) * P(B)
- 2) P(A или B) = P(A) + P(B) + P(A) * P(B)
- 3) P(A или B) = P(A) + P(B)
- 4) P(A или B) = P(A) + P(B) * P(B/A)

9. Вероятность произведения двух независимых событий равна:

- 1) P(AuB) = P(A)*P(B)
- 2) P(AuB) = P(A) + P(B) * P(B/A)
- 3) $P(A \cup B) = P(A) * P(B) * P(B/A)$
- 4) $P(A \cup B) = P(A) * P(B) P(AB)$

10. Вероятность произведения двух зависимых событий равна:

- 1) P(A u B) = P(A) * P(B)
- 2) P(A u B) = P(A) * P(B/A)
- 3) $P(A \cup B) = P(A) * P(B) * P(B/A)$
- 4) $P(A \cup B) = P(A) * P(B) P(AB)$

11. Дисперсия характеризует:

- 1) наименьшее значение случайной величины
- 2) среднее значение случайной величины
- 3) степень рассеяния случайной величины относительно её математического ожидания
- 4) степень рассеяния случайной величины относительно её моды

12. Дисперсия дискретной случайной величины рассчитывается по формуле:

1)
$$D(x) = \int_{-\infty}^{\infty} xf(x)dx$$

2)
$$D(x) = \int_{0}^{\infty} \left[x - M(x) \right]^{2} f(x) dx$$

3)
$$D(x) = \sum_{i=1}^{n} [x_i - M(x)]^2 P_i$$

$$4) \quad D(x) = \sum_{i=1}^{n} x_i \cdot P_i$$

13. Дисперсия непрерывной случайной величины рассчитывается по формуле:

1)
$$D(x) = \int_{-\infty}^{\infty} xf(x)dx$$

2)
$$D(x) = \int_{-\infty}^{\infty} [x - M(x)]^{2} f(x) dx$$

3)
$$D(x) = \sum_{i=1}^{n} [x_i - M(x)]^2 P_i$$

$$4) \quad D(x) = \sum_{i=1}^{n} x_i \cdot P_i$$

14. Дискретная случайная величина не подчиняется:

- 1) распределению Пуассона
- 2) нормальному распределению
- 3) биноминальному распределению
- 4) распределению Бернулли

15. Математическим ожиданием случайной величины называется:

- 1) сумма произведений всех возможных значений случайной величины на соответствующие им вероятности
- 2) корень квадратный из дисперсии
- 3) совокупность всех значений этой величины с соответствующими вероятностями
- 4) сумма квадрата произведений всех возможных значений случайной величины на соответствующие им вероятности

Эталоны правильных ответов к заданиям в тестовой форме

1	2	3	4	5	6	7	8	9	10
3)	1)	1)	2)	1)	2)	1)	3)	1)	3)
11	12	13	14	15					
3)	3)	2)	2)	1)					

Критерии оценки рубежного тестового контроля знаний по окончании модуля «математика»:

Студентом даны правильные ответы на задания в тестовой форме (25 тестовых заданий). Оценка рубежного контроля в тестовой форме

Менее 70% правильных ответов - 0 баллов

От 72 до 100% правильных ответов – число баллов равно числу правильных ответов

72	74	76	78	80
22	23	24	25	26
82	84	86	88	90
27	28	29	30	31
92	94	96	98	100
32	33	34	35	36

Примеры ситуационных задач к рубежному контролю по модулю «Математика»

- 1) Отец правша (Aa) со II (A0) группой крови, мать правша (Aa) с III (B0) группой. У них 4 детей. Построить закон распределения среди детей числа правшей с IV группой крови. Найти M, D, σ .
- 2) Генотип отца AaBbCcDd, генотип матери AabbCcDd.У них 3 детей. Построить закон распределения для числа детей с генотипом отца. Найти M, D, σ.
- 3) Определите доверительный интервал для генеральной средней роста призывников с доверительной вероятностью 0,95 по результатам следующей выборки: 168, 174, 185, 162, 168, 179, 185, 195, 192, 174, 182, 163, 175, 185, 160, 172.
- 4) В течение дня в родильном доме зафиксировали следующие значения роста новорождённых девочек (см): 50, 52, 53, 52, 54, 52, 55, 56, 51, 55. Определите доверительный интервал для генеральной средней с доверительной вероятностью 0,95.
- 5) Построить гистограмму плотности относительной частоты для веса новорождённых, разбив весь диапазон значений на 5 интервалов. Вес : 3.4, 3.3, 3.5, 3.1, 3.7, 2.9, 3.7, 3.6, 3.6, 3.4, 3.5, 3.1, 3.0, 3.4, 3.6, 3.9, 3.8, 3.3, 3.5, 3.4, 3.6, 3.3, 3.2, 3.1, 3.2.Оценить генеральную среднюю и генеральную дисперсию по данной выборке.

Критерии оценки при решении итоговых ситуационных задач

- **0 баллов -** студент неправильно, решает задачу, допуская грубые арифметические ошибки; не описан ход решения задачи.
- **1 балл** студент решает задачу, допуская значительные арифметические ошибки; не описан ход решения задачи.
- **2 балла** студент правильно, аккуратно и оперативно решает задачу, допуская значительные арифметические ошибки; описан ход решения задачи.
- **3 балла** студент правильно, аккуратно и оперативно решает задачу, не допуская ошибок; или допуская незначительные арифметические ошибки; описан ход решения задачи.

2. Оценочные средства для текущего и рубежного контроля успеваемости по модулю «Физика»

Примеры заданий по практической работе по темам №4-№10.

Лабораторная работа № 7

ЛЕЧЕБНЫЙ ЭЛЕКТРОФОРЕЗ И ГАЛЬВАНИЗАЦИЯ

- <u>ЩЕЛЬ РАБОТЫ</u>: 1. Изучить применение постоянного электрического тока с лечебной целью.
 - 2. Экспериментально определить величину подвижности ионов.
 - 3. Изучить устройство аппарата для гальванизации и электрофореза.
- ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: аппарат для гальванизации и электрофореза, вольтметр, установка для определения подвижности ионов, состоящая из столика и двух стаканов с электролитом, помещенных на подставке, раствор $KMnO_4$, фильтровальная бумага, предметное стекло, пипетка, провода, электроды.

ЗАДАНИЕ ПО РАБОТЕ

- 1. Экспериментальное определение величины подвижности ионов.
- 2. Знакомство с работой аппарата для гальванизации и электрофореза.

Вопросы для собеседования

- 1) Какие процессы происходят в биологических тканях при пропускании постоянного тока?
 - 2) Что происходит в тканях организма при лечебном электрофорезе?
- 3) Какие функции выполняет аппарат для гальванизации при проведении лечебной процедуры?
 - 4) Что такое сила тока, плотность тока?
 - 5) Что такое подвижность иона и от чего она зависит?
 - 6) Что такое гальванизация?
 - 7) Что такое электрофорез?
- 8) Можно ли для лечебного электрофореза пропускать через пациента переменный ток? Почему?
- 9) Почему при гальванизации под электроды подкладывают прокладки, смоченные изотоническим раствором?
 - 10) Что такое изотонический раствор?
 - 11) Куда помещают лекарственные вещества при лечебном электрофорезе?
- 12) Какого характера ожог кожи наблюдается при гальванизации, если под электроды не поместить прокладки, смоченные изотоническим раствором?
- 13) Из-под электродов какого знака вводятся ионы металлов при лечебном электрофорезе? Из-под электродов какого знака вводятся кислотные радикалы и другие отрицательные ионы при лечебном электрофорезе?
 - 14) От чего зависит время проведения процедуры лечебного электрофореза?
 - 15) От чего зависит скорость иона при его движении в тканях?

Примеры ситуационных задач по практической работе по темам №4-№9.

- 1) Подвижность ионов кальция в водном растворе равна $6.2*10^{-8}$ $\frac{m^2}{B \cdot c}$. Определить скорость установившегося движения ионов в поле напряженностью 300 В/м.
- 2) Глубина проникновения ионов кальция в биоткани при процедуре злектрофореза, длившейся 10 мин, оказалась равной 1,2 см. Найти скорость ионов.
- 3) Определить подвижность ионов по результатам проведенных опытов, если напряжение между электродами, расположенными на расстоянии 12 см, равно 36 В, а ионы переместились на 1см за 20 минут?
- 4) Подвижность ионов натрия в водном растворе при 25°C равна $5.2*10^{-8}$ $\frac{M^2}{B\cdot c}$, а ионов хлора выше в 1,5 раза. Найти подвижность ионов хлора.

Эталоны ответов.

- 1) 0.02 mm/c.
- 0.02 mm/c
- 3) $2.8*10^{-8} \frac{M^2}{B \cdot c}$
- 4) $7.8*10^{-8} \frac{M^2}{B \cdot c}$

Критерии оценки теоретической части работы

- 1. Знать основные физические законы, описывающие изучаемое явление, и соответствующие им формулы.
- 2. Знать обозначения и смысл физических величин, входящих в формулы, и их единицы размерностей.
- 3. Объяснить закономерности изучаемых медико-биологических процессов с точки зрения физики.

5 баллов – выполнены все требования;

- **4 балл** допущены незначительные ошибки в ответах, не искажающих сути изучаемого явления;
 - 3 балла полностью не выполнено часть одного из требований;
 - 2 балла полностью не выполнено одно требование;
- **1 балл** полностью не выполнено одно требование, допускаются незначительные ошибки по другим критериям;
- **0 баллов** не выполнено два и более требования, даны ответы, имеющие резкое расхождение с физической теорией.

Критерии оценки выполнения практической части работы

- 1. Представить готовый конспект работы.
- 2. Объяснить результаты измерений и расчетов, рассказать, как они получены.
- 3. Показать знания и умения работы с приборами.

5 баллов – выполнены все требования;

- **4 балл** допущены незначительные ошибки в оформлении работы или проведении расчётов, которые корректируются в течение недели;
- **3 балла** допущены незначительные ошибки в оформлении работы или проведении расчётов, которые корректируются в течение более одной недели;
- **2 балла** допущены значительные ошибки в оформлении работы или проведении расчётов, дающие отклонения измеряемой величины от истинного значения не более, чем на порядок;
- **1 балл** не выполнено одно требование, допущены значительные ошибки в оформлении работы или проведении расчётов, дающие отклонения измеряемой величины от истинного значения более, чем на порядок;
- 0 баллов не выполнено два и более требования, предъявлены результаты измерений и расчётов, не полученные самостоятельно.

Примеры заданий в тестовой форме к темам №4-№10.

Задания в тестовой форме для рубежного контроля уровня знаний по модулю «Физика» Укажите правильный вариант ответа:

1. Частицы воздуха при распространении в нем звуковой волны

- 1) колеблются перпендикулярно направлению распространения
- 2) совершают колебания вдоль направления распространения волны
- 3) движутся прямолинейно и равноускоренно по направлению волны
- 4) движутся по синусоидальной траектории

2. Звук распространяется

- 1) в твердых, жидких, газообразных средах
- 2) в твердых и жидких средах, в газах и вакууме
- 3) в воздухе и вакууме
- 4) только в твердых телах и газах

3. Длина механической волны - это расстояние

- 1) между двумя ближайшими частицами, колеблющимися одинаково
- 2) между двумя любыми частицами, колеблющимися одинаково
- 3) проходимое частицей за один период колебания
- 4) между двумя ближайшими частицами, колеблющимися в противофазе

4. Норма порога слышимости на частоте 1 кГц

- 1) 0 BT/M^2
- 2) 10^{-12} BT/cm^2
- 3) 10^{-12} BT/m^2
- 4) 10 BT/m^2

5. Значение порога слышимости зависит от

- 1) физиологических особенностей человека и интенсивности звука
- 2) частоты и интенсивности звука
- 3) амплитуды звуковой волны
- 4) физиологических особенностей человека и частоты звука

6. При переходе звука из воздуха в воду изменится

- 1) частота колебаний
- 2) период колебаний
- 3) фаза колебаний
- 4) длина волны

7. При увеличении интенсивности звука в 100 раз громкость звука...

- 1) увеличится на 2 Белла
- 2) увеличится в два раза
- 3) увеличится в 10 раз
- 4) увеличится в 100 раз

8. Механическая волна переносит

- 1) вещество
- 2) массу
- 3) скорость

4) энергию

9. Порог болевого ощущения (на частоте 1кГц) равен

- 1) 10 BT/cm^2
- 2) 10^{-12} BT/m^2
- 3) 13 Б
- 4) 100 дБ

10. Звуковая волна, распространяющаяся в воздухе, представляет собой

- 1) механические поперечные волны с частотами от 16 до 20000 Гц
- 2) механические продольные волны с частотами от 16 до 20000 Гц
- 3) электромагнитные волны с частотами от 16 до 20000 Гц
- 4) продольные волны с частотами от 16 до 20000 Гц

Эталоны правильных ответов к заданиям в тестовой форме.

 1. 2)
 7. 1)

 2. 1)
 8. 4)

 3. 1)
 9. 3)

 4. 3)
 10. 2)

 5. 4)
 11. a)

 6. 4)

Критерии оценки рубежного тестового контроля знаний по окончании модуля «физика»:

Студентом даны правильные ответы на задания в тестовой форме (50 тестовых заданий):

Оценка рубежного контроля в тестовой форме Менее 70% правильных ответов (менее 35)- 0 баллов Более 70% правильных ответов (от 35 до 50) — число баллов равно числу правильных ответов.

Перечень практических навыков (умений), которые необходимо освоить студенту

Умение	Критерий оценки
ОПК-10. Способен решать стандартные задачи профессиональной деятельности с использованием информационных, библиографических ресурсов, медико- биологической терминологии, информационнокоммуникационных технологий с учетом основных требований информационной безопасности	Зачтено - студент отвечает на теоретические вопросы, правильно или с небольшими огрехами выполняет работу, решает ситуационные задачи, демонстрирует логические способности обоснования решения. Не зачтено — студент не владеет теоретическим материалом и делает грубые ошибки при выполнении методики практических работ, не может сделать логического заключения, не справляется с тестами или ситуационными задачами.

2. Оценочные средства для промежуточной аттестации по итогам освоения дисциплины (зачёт)

Критерии балльно-рейтинговой системы оценки знаний студентов представлены в Приложении №5

Студенты, не набравшие необходимого числа баллов по балльно-рейтинговой системе, сдают зачёт следующим порядком.

Критерии оценки по итогам промежуточной аттестации (зачёт)

Зачет по модулю является 3-х этапным.

1 этап – компьютерное тестирование по математике и по физике. При получении 70% (53 правильных ответа) и более правильных ответов из общего числа вопросов обоих тестов (математика, физика) студент получает 1 балл и допускается ко второму этапу зачета (по билетам). Если набрано меньше 70%, выставляется «незачтено».

2 этап – решение 3-х ситуационных задач: одна задача - по теории вероятности, одна задача – по математической статистике, одна задача - по медицинской физике. За каждую решенную задачу начисляется 1 балл.

3 этап — проверка практических навыков работы с двумя приборами из лабораторного практикума. За знание каждого прибора начисляется 1 балл.

Для получения зачета необходимо набрать 4 балла, при этом не менее 1 балла на каждом этапе.

Содержание и уровень сложности зачетных задач по математике и физике соответствуют содержанию и уровню сложности задач, решаемых на занятиях по математике и при выполнении работ лабораторного практикума.

Задача считается решенной, если получен правильный ответ и приведено решение, из которого этот ответ следует.

Для успешной сдачи практических навыков по прибору (аппарату) необходимо:

- рассказать о назначении прибора и его применении, сказать, какие величины он измеряет;
- рассказать порядок работы с прибором, указав назначение его клавиш, ручек, регулировок, измерительных шкал, подключении и установке;
- продемонстрировать умение работы с прибором, произведя измерение.

Список приборов (аппаратов) на зачете:

- 1. Штангенциркуль
- 2. Аудиометр
- 3. Аудиотестер
- 4. Рефрактометр
- 5. Торсионные весы
- 6. Аппарат для гальванизации и электрофореза.

Оценочные средства для промежуточной аттестации по итогам освоения дисциплины (зачёт) представлены по каждой компетенции в Приложении 1

V. Учебно-методическое и информационное обеспечение дисциплины

1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины:

а). Основная литература:

- 1. Медицинская информатика : учебник / Т. В. Зарубина [и др.] ; под общ. ред. Т. В. Зарубиной, Б. А. Кобринского. Москва : ГЭОТАР-Медиа, 2018 512 с. : ил. ISBN 978-5-9704-4573-0. Текст : непосредственный
- 2. Антонов, В. Ф. Физика и биофизика [Электронный ресурс: учебник / В. Ф. Антонов, Е. К. Козлова, А. М. Черныш. 2-е изд., испр. и доп. Москва: ГЭОТАР-Медиа, 2013. 472 с. ISBN 978-5-9704-2401-8. Текст: непосредственный

б). Дополнительная литература:

- 1. Федорова, В. Н. Физика: учебник / Федорова В. Н., Фаустов Е. В. Москва: ГЭОТАР-Медиа, 2011. 384 с. ISBN 978-5-9704-1983-0. Текст: непосредственный
- 2. Основы высшей математики и математической статистики : учебник для вузов : 2-е изд., испр. / , И. В. Павлушков, Л. В. Розовский, А. Е. Капульцевич . М. : ГЭОТАР-Медиа, 2007 . 423 с.
- 3. Демидова А.А., Омельченко В.П. Математика: Компьютерные технологии в медицине. М. Феникс, 2008, 588 с.
- 4. Омельченко, Виталий Петрович Математика : компьютерные технологии в медицине : учебник / Виталий Петрович Омельченко, Александра Александровна Демидова . Ростов н/Д : Феникс, 2008 . 588 с.
- 5. Антонов, Валерий Федорович Физика и биофизика для студентов медицинских вузов : учебник / Валерий Федорович Антонов, Елена Карловна Козлова, Александр Михайлович Черныш . М. : ГЭОТАР-Медиа, 2010 . 477 с.
- 6. Павлушков И.В. Основы высшей математики и статистики. М. Гэотар, 2008, 424 с.
- 7. Баврин И.И. Краткий курс высшей математики для химико-биологических и медицинских специальностей М.: Академия, 2010. 616 с

2. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

1. Физика, математика, Модуль «Математика», Методические указания к выполнению лабораторного практикума для студентов, обучающихся по специальностям «Стоматология» / Туровцев В.В., Богданов Ю.В., Бахтилов В.И., Корпусов О.М.,

- Залетов А.Б., Гординская Е.Н., Крючкова Е.В.
- 2. Физика, математика, Модуль «Физика», Методические указания к выполнению лабораторного практикума для студентов, обучающихся по специальностям «Стоматология» / Туровцев В.В., Богданов Ю.В., Бахтилов В.И., Корпусов О.М., Залетов А.Б., Гординская Е.Н., Крючкова Е.В.
- 3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Профессиональные базы данных, информационные справочные системы и электронные образовательные ресурсы:

Клинические рекомендации: http://cr.rosminzdrav.ru/;

Электронный справочник «Информио» для высших учебных заведений (www.informuo.ru);

Университетская библиотека on-line (www.biblioclub.ru);

Информационно-поисковая база Medline (http://www.ncbi.nlm.nin.gov/pubmed);

База данных POLPRED (www.polpred.com);

Электронный библиотечный абонемент Центральной научной медицинской библиотеки Первого Московского государственного медицинского университета им. И.М. Сеченова // http://www.emll.ru/newlib/;

Бесплатная электронная библиотека онлайн «Единое окно доступа к образовательным ресурсам» // http://window.edu.ru/;

Официальный сайт Министерства здравоохранения Российской Федерации // https://minzdrav.gov.ru/;

Российское образование. Федеральный образовательный портал. //http://www.edu.ru/;

4. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- 4.1. Перечень лицензионного программного обеспечения:
- 1. Microsoft Office 2016:
- Access 2016:
- Excel 2016;
- Outlook 2016;
- PowerPoint 2016;
- Word 2016:

Pro

- Publisher 2016;
- OneNote 2016.
- 2. Программное обеспечение для тестирования обучающихся SUNRAV TestOffice-
- 3. Система дистанционного обучения Moodle
- 4. Платформа Microsoft Teams

4.2. Перечень электронно-библиотечных систем (ЭБС):

- 1. Электронно-библиотечная система «Консультант студента» (www.studmedlib.ru);
- 2. Консультант врача. Электронная медицинская библиотека [Электронный ресурс]. Москва: ГЭОТАР-Медиа. Режим доступа: www.geotar.ru;
 - 3. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)

VI. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Приложение № 3

VII. Научно-исследовательская работа студента

Научно-исследовательская работа студентов представлена: реферативной работой; проведением научных исследований с последующим выступлением на итоговых научных студенческих конференциях в Твери и в других городах России; публикацией в сборниках студенческих работ; кафедральных изданиях и Верхневолжском медицинском журнале.

VIII. Сведения об обновлении рабочей программы дисциплины Представлены в Приложении № 4

Фонды оценочных средств

для проверки уровня сформированности компетенций (части компетенций) для промежуточной аттестации по итогам освоения дисциплины

- ОПК 10. Способен решать стандартные задачи профессиональной деятельности с использованием информационных, библиографических ресурсов, медико- биологической терминологии, информационно-коммуникационных технологий с учетом основных требований информационной безопасности
- 1) Типовые задания для оценивания результатов сформированности компетенции на уровне «Знать» (основные физико-химические, математические и естественно-научные понятия и методы, которые используются в медицине):

Укажите правильный вариант ответа:

1. Зависимость называется функциональной, если:

- 1) одному значению одной переменной величины соответствует множество значений другой
- 2) одному значению одной переменной величины соответствует одно значение дру-
- 3) одному значению одной переменной величины соответствует два значения другой
- 4) одному значению одной переменной величины не соответствует ни одно значение другой

2. Если одному значению одной переменной соответствует множество значений другой, то такая зависимость называется:

- 1) функциональной
- 2) обратно пропорциональной
- 3) статистической
- 4) прямо пропорциональной

3. Метод регрессии позволяет установить:

- 1) зависимость между изменчивостью признаков
- 2) меру тесноты связи двух переменных
- 3) количественное изменение среднего значения одной величины по мере изменения другой
- 4) доверительную вероятность и среднее значение

$$\sum_{i=1}^{n} x_i$$

4. По формуле $\frac{\displaystyle\sum_{i=1}^{n} x_{i}}{n}$ находят:

- 1) дисперсию выборки
- 2) среднее значение выборки
- 3) генеральную совокупность
- 4) среднее квадратическое отклонение

$$\sum_{i=1}^{n} (x_i - \bar{x})^2$$

5. По формуле $\frac{\displaystyle\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}{\pi}$ находят:

- 1) среднее значение выборки
- 2) дисперсию выборки

- 3) среднее отклонение случайной величины
- 4) коэффициент корреляции
- 6. Статистическая совокупность, которая включает в себя все изучаемые объекты, называется:
 - 1) представительной выборкой
 - 2) генеральной совокупностью
 - 3) статистическим рядом
 - 4) вариационным рядом
- 7. Статистическая совокупность, которая включает в себя не все изучаемые объекты, а лишь их часть, называется:
 - 1) выборкой
 - 2) генеральной совокупностью
 - 3) статистическим рядом
 - 4) вариационным рядом
- 8. Интервал возможных значений искомого параметра, в котором могут находиться с некоторой вероятностью его значения, называется:
 - 1) доверительным интервалом
 - 2) вариационным интервалом
 - 3) корреляционным интервалом
 - 4) представительным интервалом
- 9. Коэффициент линейной корреляции может принимать значения:
 - 1) от $-\infty$ до $+\infty$
 - 2) от −1 до 0
 - 3) от 0 до 1
 - 4) от -1 до +1
- 10. Коэффициент, характеризующий силу статистической линейной связи между случайными величинами, называется:
 - 1) коэффициентом корреляции
 - 2) коэффициентом регрессии
 - 3) коэффициентом вариации
 - 4) коэффициентом дисперсии
- **2)** Типовые задания для оценивания результатов сформированности компетенции на уровне «Уметь» (решать типичные задачи на основе воспроизведения стандартных алгоритмов решения, решать медико-биологические задачи с применением вероятностных методов.):

Эталоны правильных ответов к заданиямв тестовой форме.

1	2	3	4	5
2)	3)	3)	2)	2)
6	7	8	9	10
2)	1)	1)	4)	2)

- 1. Статическое давление идеальной жидкости, текущей по трубе, при её расширении
 - 1) уменьшится
 - 2) увеличится
 - 3) уменьшится в 3 раза
 - 4) не изменится

2. Несжимаемая жидкость в трубе переменного сечения движется

- 1) равномерно
- 2) прямолинейно
- 3) скачкообразно
- 4) с ускорением

3. Скорость течения идеальной жидкости, текущей по трубе переменного сечения, в месте сужения трубы

- 1) уменьшится
- 2) не изменится
- 3) сначала увеличивается, а затем уменьшается
- 4) увеличится

4. Для измерения скорости кровотока применяется метод

- 1) капиллярный
- 2) ультразвуковой
- 3) Стокса
- 4) ротационный

5. Ультразвуковой метод определения скорости кровотока основан на эффекте

- 1) Зеемана
- 2) Доплера
- 3) Комптона
- 4) Холла

6. Метод измерения скорости кровотока

- 1) электромагнитный
- 2) капиллярный
- 3) Стокса
- 4) Пуазейля

7. Свойство жидкости оказывать сопротивление перемещению её слоёв относительно друг друга, называется

- 1) текучестью
- 2) турбулентностью
- 3) вязкостью
- 4) смачиванием

8. Гидравлическое сопротивление с увеличением радиуса трубы

- 1) не изменяется
- 2) увеличивается
- 3) уменьшается
- 4) сначала увеличивается, а затем уменьшается

9. Гидравлическое сопротивление с уменьшением вязкости жидкости

- 1) увеличивается
- 2) не изменяется
- 3) увеличивается в несколько раз
- 4) уменьшается

10.	идравлическое сопротивление с уменьшением площади поперечного сечени	Я
	рубы	

- 1) уменьшается
- 2) не изменяется
- 3) сначала уменьшается, а затем увеличивается
- 4) увеличивается

11. Статическое давление вязкой жидкости при её течении по горизонтальной цилиндрической трубе, вдоль трубы

- 1) не изменяется
- 2) увеличивается
- 3) уменьшается
- 4) сначала увеличивается, а потом уменьшается

Эталоны правильных ответов к заданиям в тестовой форме

- 1. 2)
- 2. 4)
- 3. 4)
- 4. 2)
- 5. 2)
- 6. 1)
- 7. 3)
- 8. 3)
- 9. 4)
- 10. 4)
- 11. 3)

2) Типовые задания для оценивания результатов сформированности компетенции на уровне «Уметь» (применять современные информационно-коммуникационные технологии для решения задач профессиональной деятельности; осуществлять эффективный поиск информации, необходимой для решения задач профессиональной деятельности с использованием справочных систем и профессиональных баз данных; использовать современные информационно-коммуникационные технологии в профессиональной деятельности с учетом основных требований информационной безопасности.):

Примеры ситуационных задач

- 1. Из 530 пациентов, посетивших стоматологическую клинику, имели заболевание кариесом 315 человек. Какова относительная частота прихода больных с кариесом?
- 2. В беспроигрышной лотерее разыгрывается 150 денежных и некоторое количество вещевых выигрышей. Вероятность денежного выигрыша равна 0,6. Какова вероятность вещевого выигрыша? Каково количество вещевых выигрышей?
- 3. Вероятность заболевания при эпидемии данной болезни равна 0,25. Каково приближенное количество людей не заболеет в городе, где проживает 100 000жителей?
- 4. В больницу, имеющую пять отделений, поступают больные. Вероятности поступления больного в соответствующие отделения равны: 0,1; 0,3;0,2;0,1; 0,3. Для больных, поступающих в первое и третье отделения необходим обезболивающий препарат. Какое количество больных надо обеспечить этим препаратом, если в месяц в больницу поступают в среднем 600 больных?
- 5. Вероятность инфекционного заболевания при эпидемии равна 0,6. Вероятность того, что заболевшему понадобится срочная помощь, равна 0,2. Сколько людей надо обеспечить срочной помощью в городе с населением 100 000 человек при эпидемии?

Эталоны ответов

- 1. 0.5
- 2. 0,4; 60
- 3. 75000
- 4. 180
- 5. 12000

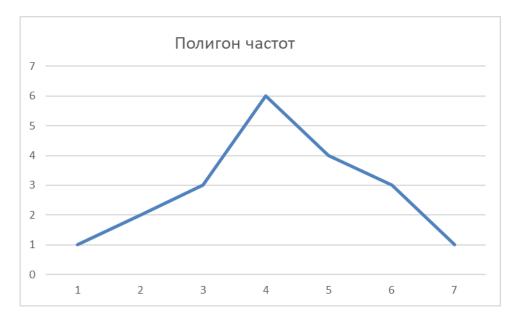
Типовые задания для оценивания результатов сформированности компетенции на уровне «Владеть» (использования современных информационных технологий, применения специального программного обеспечения и автоматизированных информационных систем для решения стандартных задач профессиональной деятельности с учетом основных требований информационной безопасности.):

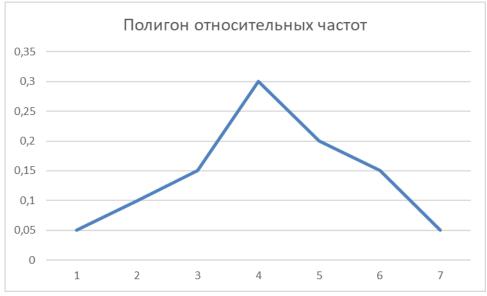
Примеры ситуационных задач

Примеры ситуационных задач по математике

- 1. Изучалось число зубов, подвергавшихся лечению, у женщин среднего возраста, проживающих в некотором регионе. Была сделана выборка: 3, 4, 5, 4, 5, 6, 2, 4, 3, 6, 3, 4, 6, 2, 4, 7, 5, 5, 1, 4. Составить дискретный статистический ряд распределения, построить полигон частот и полигон относительных частот. Рассчитать выборочные характеристики и по ним сделать точечные оценки генеральных характеристик. Сделать интервальную оценку генерального среднего значения с доверительной вероятностью 0,95.
- 2. Изучалась динамика изменения роста подростков в некотором городе. Для подростков определенного возраста была сделана выборка значений роста: 174, 163, 184, 178, 175, 155, 182, 163, 174, 158, 176, 191, 179, 171, 167, 176, 172, 168, 180, 183, 195, 160, 164, 171, 174, 180, 182, 191, 166, 188, 166, 170, 172, 180, 187, 184, 178, 174, 171, 159, 176, 171, 186, 180, 175, 171, 163, 174, 166, 182. Составить интервальный статистический ряд распределения, построить гистограмму частот и гистограмму относительных частот. Рассчитать выборочные характеристики и по ним сделать точечные оценки генеральных характеристик. Найти доверительный интервал генерального среднего значения с доверительной вероятностью 0,95. (коэффициент Стьюдента равен 2,009).
- 3. При обследовании состояния здоровья работников большого предприятия изучалось их артериальное давление. Была получена выборка систолического давления у мужчин среднего возраста: 150, 165, 130, 155, 180, 150, 140, 130, 140, 170, 160, 150, 160, 135, 170, 155, 140, 145, 135, 160, 165, 130, 150, 175, 120, 150, 155, 165, 155, 145. Составить статистический интервальный ряд распределения, построить гистограмму частот и гистограмму относительных частот. Рассчитать выборочные характеристики и по ним сделать точечные оценки генеральных характеристик. Найти доверительный интервал генерального среднего значения с доверительной вероятностью 0.95 (коэффициент Стьюдента равен 2,045).

Эталоны ответов

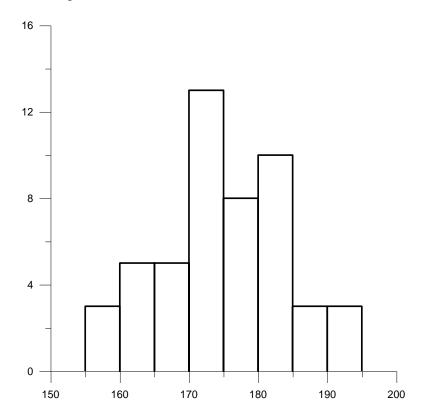

1.


Величина	Значение
Среднее	4,15
Выборочное среднеквадратическое отклонение	1,53
Оценка генерального среднеквадратического отклонения	1,49
Интервальная оценка	(3,45; 4,85)

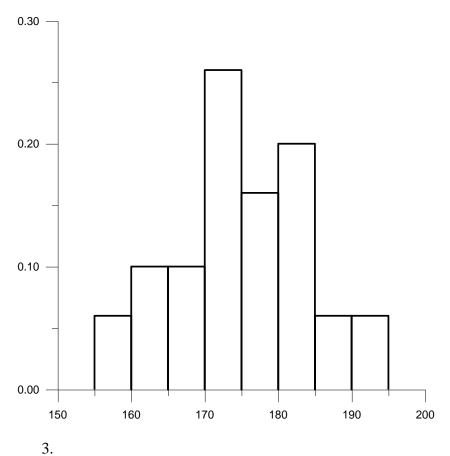
Дискретный ряд распределения

X	р
1	0,05
2	0,1
3	0,15

4	0,3
5	0,2
6	0,15
7	0.05


2.

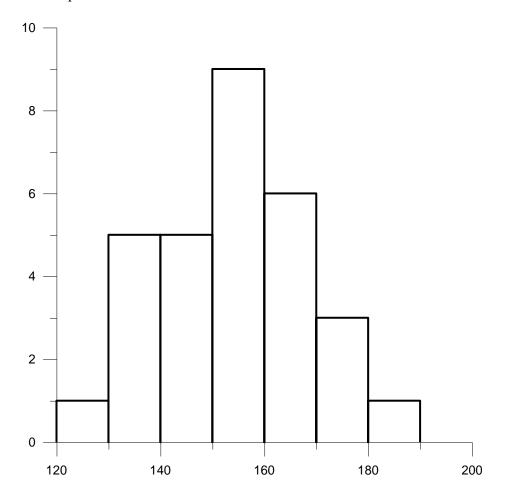
Величина	Значение
Среднее	174,5
Выборочное среднеквадратическое отклонение	9,1
Оценка генерального среднеквадратического отклонения	9,0
Интервальная оценка	(172; 177)


Интервальный ряд распределения

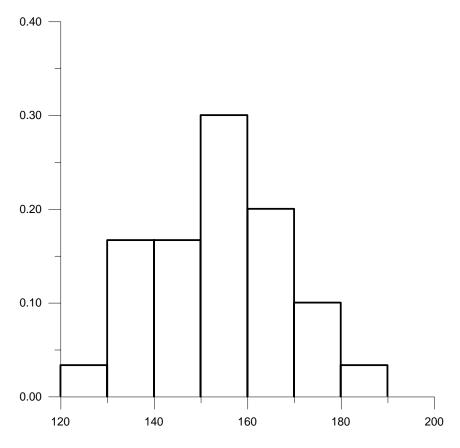
X	[155; 160)	[160; 165)	[165; 170)	[170; 175)	[175; 180)	[180; 185]	[185; 190)	[190; 195]
p	3	5	5	13	8	10	3	3

Гистограмма частот

Гистограмма относительных частот


Величина Значение

Среднее	151
Выборочное среднеквадратическое отклонение	14,7
Оценка генерального среднеквадратического отклонения	14,45
Интервальная оценка	(146; 157)


Интервальный ряд распределения

X	[120; 130)	[130; 140)	[140; 150)	[150; 160)	[160; 170)	[170; 180]	[180; 190]
p	1	5	5	9	6	3	1

Гистограмма частот

Гистограмма относительных частот

Пример ситуационных задач по физике №1

- 1. Луч света переходит из воздуха $(n_1=1)$ в стекло $(n_2=1,5)$. Определить, чему равен синус предельного угла преломления.
- 2. Атомное ядро захватывает нейтрон и при этом испускает гамма квант. На сколько единиц изменится массовое число ядра?

№2

- 1. Луч света переходит из стекла в воздух. Определить показатель преломления стекла, если синус предельного угла полного внутреннего отражения равен 0,66.
- 2. На какую высоту поднимется вода в смачиваемой ею капиллярной трубке радиусом 2мм? Плотность воды 1000 кг/куб.м, коэффициент поверхностного натяжения воды 0,072 Н/м. Считать ускорение свободного падения 10 м/с2.

<u>№</u>3

- 1. Скорость света в воздухе 300000 км/с. Луч света переходит из воздуха (n_1 =1) в стекло (n_2 =1,5). Какова скорость света в стекле?
- 2. Какое дополнительное давление возникает в капиллярной трубке диаметром 4мм, в которой находится вода. Коэффициент поверхностного натяжения воды 0,072 Н/м.

<u>№</u>4

- 1. Луч света переходит из воздуха в некоторую среду. Определить показатель преломления среды, если скорость света в ней 250000 км/c. Скорость света в воздухе 300000 км/c.
- 2. Подвижность ионов кальция в водном растворе равна 0,00006 см²/(В*c). Определить скорость установившегося движения ионов в электрическом поле с напряженностью 200 В/м.

Эталоны ответов

2. $1,2\cdot10^{-6} \text{ m/c}$

№1
1. 0,667
2. Увеличится на 1

№2
1. 1,5
2. 7,2·10⁻³ м

№3
1. 200 000 км/c=2·10⁸ м/c
2. 36 Па

№4
1. 1,2

Справка

о материально-техническом обеспечении рабочей программы дисциплины **Физика, математика**

(название дисциплины, модуля, практики)

№ п\п	Наименование специаль- ных* помещений и поме- щений для самостоятель- ной работы	Оснащенность специальных помещений и поме- щений для самостоятельной работы
1	Лаборатория по физике и математике №1 (к 402)	Медицинские торсионные весы, электронный осциллографы, аудиотестер, рефрактометр, оптический поляриметр, электрические датчики: фотодатчик, индуктивный, пьезоэлектрический (измеритель давления), терморезисторный (измеритель температуры), радиометр, аппарат для гальванизации и электрофореза «поток», аппараты для дарсонвализации искра» и «элад», аппарат для низкочастотной терапии «тонус», электрокардиограф, электрические измерительные приборы: амперметры, вольтметры, мультиметры, генератор электрических сигналов звуковой частоты.
2	Лаборатория по физике и математике №2 (к 404)	Медицинские торсионные весы, электронный осциллографы, аудиометр, аудиотестер, рефрактометр, оптический поляриметр, электрические датчики: фотодатчик, индуктивный, пьезоэлектрический (измеритель давления), терморезисторный (измеритель температуры), радиометр, аппарат для гальванизации и электрофореза «поток», аппараты для дарсонвализации искра» и «элад», электрокардиографы, электрические измерительные приборы: амперметры, вольтметры, мультиметры, генератор электрических сигналов звуковой частоты.
3	Лаборатория по физике и математике №3(к 405)	Медицинские торсионные весы, электронный осциллографы, аудиотестер, рефрактометр, оптический поляриметр, электрические датчики: фотодатчик, индуктивный, пьезоэлектрический (измеритель давления), терморезисторный (измеритель температуры), радиометр, аппарат для гальванизации и электрофореза «поток», аппараты для дарсонвализации искра» и «элад», электрокардиографы, аппарат «электросон» для низкочастотной терапии, электрические измерительные приборы: амперметры, вольтметры, мультиметры, генератор электрических сигналов звуковой частоты.
4	Компьютерный класс	Персональные компьютеры (25 шт.), интерактивная доска

^{*}Специальные помещения - учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Лист регистрации изменений и дополнений на _____ учебный год в рабочую программу дисциплины (модуля, практики)

	(название дист	циплины, м	юдуля,	практики)	
	для студент	ОВ		курса,	
специальность:					_
			(наз	вание специальности)	
форма обучения: очная	л/заочная				
Изменения и дополне		ограмму д	исципл	ины рассмотрены на	
заседании кафедры «	<u> </u>		_ 202	_ г. (протокол №)
Зав. кафедрой		_ (ФИО)			
	подпись				

Содержание изменений и дополнений

No	Раздел, пункт, номер	Старый текст	Новый текст	Комментарий		
п/п	страницы, абзац	Старын текет	TIODDIN TERET	томмонтарии		
11/11	страницы, иозац					
		Ппилапи				
1	D 2 2	Примеры:	<i>V</i>	И		
1	Раздел V, n 2.,	Критерии оценки	Критерии оценки	Изменены кри-		
	стр.38, абз. 3-5	второго этапа эк-	второго этапа эк-	терии оценки		
		замена (тестовый	замена (тестовый второго эт			
		контроль):	контроль):	экзамена		
		«зачтено» — если	«зачтено» — если			
		правильный ответ	правильный ответ			
		дан на 70 % вопро-	дан на 60 % вопро-			
		сов и более,	сов и более,			
		«не зачтено» – если	«не зачтено» — если			
		правильный ответ	правильный ответ			
		дан менее, чем на	дан менее, чем на 60			
		70 % вопросов.	% вопросов.			
2	Раздел VI, n a), стр.	Основная литерату-	Основная литерату-	Обновлена ос-		
	42	pa:	pa:	новная лите-		
		1. Маколкин, В. И.	1. Маколкин, В. И.	ратура		
		Внутренние болез-	Внутренние болезни			
		ни [Текст]: учеб-	[Текст]: учебник, 6-			
		ник, 5-е изд. / В. И.	е изд. / В. И. Макол-			
		Маколкин, С. И.	кин, С. И. Овчарен-			
		Овчаренко. – М.:	ко. – М.: ГЭОТАР-			
1 1		Медицина, 2005. —	Медиа, 2012. – 768			
		591 c.	<i>c</i> .			
3	Раздел VI, n в), стр.	-	Программное обеспе-	Добавлен Ин-		
	43		чение и Интернет-	тернет-ресурс.		
			ресурсы:	I FIJF		
			1. www.studmedlib.ru -			
			Консультант сту-			
			, ,			
			дента. Электронная			

	54.5-44.044.044	
	оиолиотека.	

В случае внесения изменений в **пункт 2 раздела III** Рабочей программы — **Учебно- тематический план** следует в качестве приложения к **Листу регистрации изменений и дополнений в рабочую программу дисциплины (модуля)** представить измененный **Учеб- но-тематический план (в академических часах) и матрицу компетенций** (таблицу) с пояснениями.

Примерные варианты пояснений:

- 1. Перераспределены часы между следующими разделами (перечислить).
- 2. Увеличены часы аудиторной работы по следующим темам (перечислить).
- 3. Вынесены на самостоятельное изучение следующие темы (перечислить).
- 4. Исключена лекция по теме (название) и введена лекция по теме (название).

При этом не допускается произвольное изменение часовой нагрузки, нарушение соотношения между различными видами учебной работы, введение не предусмотренных учебным планом специальности/направления подготовки зачётов и экзаменов.

Использование балльно-накопительной системы

Модуль «Математика»

- 1. Вводный контроль (до 3-х задач) в начале занятия 5 баллов
- 2. Рубежный контроль по модулю «Математика»
 - 2.1. Решение 5 задач 15 баллов
 - 2.2. Компьютерное тестирование по модулю «Математика»

Оценка рубежного контроля в тестовой форме

Менее 72% правильных ответов - 0 баллов

От 72 до 100% правильных ответов от 18 до 25 – баллов

72	76	80	84	88	92	96	100
18	19	20	21	22	23	24	25

- 3. Работа в аудитории 1 балл.
- 4. Максимальная сумма баллов 70
- 5. Студенты, набравшие 50 и более баллов, получают зачет.

Модуль «Физика»

- 1. Оценка выполнения лабораторной работы 10 баллов
- 5 баллов ответ по теоретической части работы
- 5 баллов выполнение практической части работы

Максимальное число баллов за лабораторный практикум – 60

2. Оценка рубежного контроля в тестовой форме

Менее 72% правильных ответов - 0 баллов

От 72 до 100% правильных ответов от 18 до 25 – баллов

72	76	80	84	88	92	96	100
18	19	20	21	22	23	24	25

Максимальное число баллов за рубежный контроль 25.

3. Оценка текущего тестирования в системе MOODLE Менее 71% правильных ответов - 0 баллов

От 71% до 100% правильных ответов по формуле $\mathbf{x} = \frac{n-71}{29}$, где \mathbf{n} – процент правильных ответов.

Максимальная оценка за тестирование в системе MOODLE – 6 баллов.

4. Оценка текущего контроля решения ситуационных задач в системе MOODLE. Менее 50% правильных ответов - 0 баллов

От 50% до 100% правильных ответов по формуле $\mathbf{x} = \frac{n-50}{25}$, где \mathbf{n} – процент правильных ответов.

Максимальная оценка за решение ситуационных задач в системе MOODLE – 12 балла

- 5. Максимальная сумма баллов 103
- 6. Студенты, набравшие 70 и более баллов, получают зачет.

Штрафные баллы:

Пропуск лекции, практического занятия или лабораторной работы по неуважительной причине – 3