Кафедра медицинской биофизики

Рабочая программа дисциплины

Прикладная биостатистика

для обучающихся 1 курса,

направление подготовки (специальность) 33.05.01 Фармация

форма обучения очная

Трудоемкость, зачетные единицы/часы	4 з.е. / 144 ч.
в том числе:	
контактная работа	67 ч.
самостоятельная работа	77 <i>u</i> .
Промежуточная аттестация, форма/семестр	Зачет / 1 семестр

Разработчики:

доцент кафедры медицинской биофизики, к.ф.-м. наук, доцент Виноградов О.М.

Внешняя рецензия дана заведующей кафедрой общей физики физико-технического факультета ТвГУ, профессором, доктором хим. наук Орловым Ю.Д.; заведующей кабинетом качества обучения и методики физики физико-технического факультета ТвГУ, кандидатом физ.-мат. наук Черновой Е.М.

Рабочая программа рассмотрена и одобрена на заседании кафедры медицинской биофизики «23» апреля 2025 г. (протокол № 19)

Рабочая программа рассмотрена и одобрена на заседании профильного методического совета <05> июня 2025 г. (протокол № 7)

Рабочая программа утверждена на заседании центрального координационнометодического совета «27» августа 2025 г. (протокол № 1)

І. Пояснительная записка

Рабочая программа дисциплины разработана в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по специальности 33.05.01 ФАРМАЦИЯ, утвержденным приказом Минобрнауки России от 27.03.2018 № 219, с учётом рекомендаций основной профессиональной образовательной программы (ОПОП) высшего образования.

1. Цель и задачи дисциплины

Целью освоения дисциплины является формирование у обучающихся общепрофессиональных компетенций для применения математических методов и осуществления математической обработки данных, полученных в ходе разработки лекарственных средств, а также исследований и экспертизы лекарственных средств, лекарственного растительного сырья и биологических объектов соответствии с федеральным государственным образовательным стандартом.

Задачами освоения дисциплины являются: изучение математических и компьютерных методов обработки данных, применяемых в научных исследованиях в медицине, фармации, здравоохранении, а также при разработке, производстве и экспертизе лекарственных средств.

2. Планируемые результаты обучения по дисциплине

ОПК - 1 Способен	Формируемые компетенции	Планируемые результаты обучения –Индикаторы достижения компетенций	В результате изучения дисциплины обучающийся должен:		
корреляционной зависимости, уравнения регрессии, уравнения линейной регрессии. Понятие о коэффициенте линейной корреляции и проверки значимости выборочного коэффициента линейной корреляции. • Методы проверки гипотезы о равенства генеральных средних двух нормально распределенных	Способен использовать основные биологические, физико-химические, химические математические методы для разработки, исследований и экспертизы лекарственных средств, изготовления лекарственных	ИДОПК-1-4 Применяет математические методы и осуществляет математическую обработку данных, полученных в ходе разработки лекарственных средств, а также исследований и экспертизы лекарственных средств, лекарственного растительного сырья и	 Базовые понятия теории вероятностей. Основные вероятностные модели. Основные теоремы теории вероятностей. Понятия дискретной и непрерывной случайной величины. Законы распределения случайных величин. Плотность распределения случайных величины. Математические характеристики случайных величин и их свойства. Понятие нормального закона распределения. Понятия генеральной и выборочной статистических совокупностей, статистического распределения выборки. Понятия о выборочных характеристиках распределения и их интервальных и точечных оценках. Понятия статистической и корреляционной зависимости, уравнения регрессии, уравнения линейной регрессии. Понятие о коэффициенте линейной корреляции и проверки значимости выборочного коэффициента линейной корреляции. Методы проверки гипотезы о равенства генеральных средних 		

	проверки гипотезы о равенстве генеральных дисперсий. Понятие о мощности статистического критерия. Методы расчета мощности критериев и соответствующих объемов выборок. • Метод однофакторного дисперсионного анализа. • Понятия стационарного и нестационарного временного ряда. Методы сглаживания нестационарных временных рядов. Методы прогнозирование временных рядов.
	 Решать прикладные задачи в области профессиональной деятельности. Решать медико-биологические задачи с применением вероятностных методов. Определять точечные и интервальные оценки параметров генеральной совокупности по выборке. Вычислять коэффициент линейной корреляции, находить уравнения линейной регрессии. Применять методы проверки гипотез о равенстве средних и равенстве дисперсий. Применять метод однофакторного дисперсионного анализа. Применять методы сглаживания нестационарных временных рядов и методы прогнозирование временных рядов.

3. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина «Прикладная биостатистика» входит в обязательную часть блока ОПОП специалитета «Фармация».

Уровень начальной подготовки обучающегося для успешного освоения дисциплины основывается на программе средней школы по физике и математике.

Освоение дисциплины «Прикладная биостатистика» необходимо как предшествующее для следующих дисциплин:

- 1. Основы биотехнологии.
- 2. Специальная фармацевтическая химия.
- 3. Токсикологическая химия.

4. Объём дисциплины составляет 4 зачётные единицы, 144 академических часов, в том числе 67 часов, выделенных на контактную работу обучающихся с преподавателем и 77 часов самостоятельной работы обучающихся.

5. Образовательные технологии

В процессе освоения дисциплины используются следующие образовательные технологии, способы и методы формирования компетенций: лекция-визуализация, традиционная лекция, активизация творческой деятельности, практические занятия с решением задач, работа с математическими компьютерными программами, участие в научно-практических конференциях, учебно-исследовательская работа студентов, подготовка и защита рефератов, использование компьютерных математических моделей.

Элементы, входящие в самостоятельную работу студента: подготовка к семинарским и практическим занятиям, написание рефератов, работа с Интернет-ресурсами, работа с компьютерными кафедральными программами, самостоятельное освоение разделов — «Мощность статистического критерия и методы расчета мощности», «Временные ряды».

6. Формы промежуточной аттестации

<u>Итоговый контроль</u> – в 1 семестре проводится зачёт с использованием балльно-рейтинговой системы.

II. Учебная программа дисциплины

1. Содержание дисциплины

- 1. Модуль «Основы биостатистики»
 - 1.1. Основы теория вероятностей
 - 1.1.1. Элементы теории вероятностей. Случайное событие. Вероятность случайного события. Отношения между событиями. Алгебра событий. Вероятность суммы и произведения событий.
 - 1.1.2. Случайные величины. Распределение дискретных и непрерывных случайных величин и их характеристики. Нормальный закон распределения. Системы случайных величин их распределения.

1.2. Элементы математической статистики

- 1.2.1. Математическая статистика. Задачи математической статистики. Генеральная и выборочная совокупности. Репрезентативность выборки. Статистическое распределение выборки, дискретные и интервальные вариационные ряды. Полигон. Гистограмма. Оценки характеристик распределения по данным выборки. Точечные оценки параметров распределения. Генеральная средняя и выборочная средняя. Генеральная и выборочная дисперсии.
- 1.2.2. Доверительный интервал и доверительная вероятность. Нахождение границ доверительного интервала для оценки математического ожидания нормально распределённой случайной величины по данным выборки. Распределение Стьюдента.
- 1.3. Корреляционный и регрессионный анализ.
 - 1.3.1. Функциональная и корреляционная зависимости. Коэффициент линейной корреляции и его свойства.
 - 1.3.2. Уравнение линейной регрессии.
- 2. Модуль «Прикладная Биостатистика»
 - 2.1. Методы работы с табличным процессором

- 2.1.1. Основные принципы работы табличных процессоров.
- 2.1.2. Построение графиков функций и диаграмм.
- 2.1.3. Статистические функции табличных процессоров.

2.2. Распределения выборочных характеристик

- 2.2.1. Выборочные характеристики.
- 2.2.2. Нормальное распределение и его свойства.
- 2.2.3. Свойства распределения χ^2 .
- 2.2.4. Доверительный интервал для дисперсии нормального распределения.
- 2.2.5. Свойства распределения Стьюдента.
- 2.2.6. Распределение Фишера-Снедекора (F распределение) и его свойства.

2.3. Статистическая проверка гипотез о средних. Общая схема проверки гипотез.

- 2.3.1. Проверка гипотезы о равенстве двух средних нормально распределенных случайных величин с неизвестными дисперсиями.
- 2.3.2. Общая схема проверки гипотез.
- 2.3.3. Вычисление мощности критерия.
- 2.3.4. Двусторонние и односторонние критические области.

2.4. Проверка гипотез о дисперсиях.

- 2.4.1. Проверка гипотезы о равенстве двух дисперсий.
- 2.4.2. Вычисление мощности критерия при проверке гипотезы о равенстве двух дисперсий.
- 2.4.3. Проверка гипотезы о равенстве нескольких дисперсий.

2.5. Однофакторный дисперсионный анализ.

- 2.5.1. Принципы однофакторного дисперсионного анализа.
- 2.5.2. Случай выборок одного объема.
- 2.5.3. Случай выборок разных объемов.

2.6. Критерий знаков.

- 2.6.1. Критерий знаков.
- 2.6.2. Мощность критерия знаков.

2.7. Временные ряды

- 2.7.1. Понятия стационарного и нестационарного временных рядов.
- 2.7.2. Методы сглаживания нестационарных временных рядов.
- 2.7.3. Методы прогнозирование временных рядов.

2. Учебно-тематический план дисциплины (в академических часах) и матрица компетенций*

	обуч	актная р ающихся одавател	I С					Формируемые компетенции		
Коды (номера) модулей (разделов) дисциплины и тем	лекции	лабораторные практикумы	практические занятия,	экзамен/зачет	Всего часов на аудиторн ую работу	Самостоя тельная работа студента	Итого часов	ОПК-1	Используемые образовательные технологии, способы и методы обучения	Формы текущего и рубежного контроля успеваемости
1.1	2		6		8	8	16	X	Л, ЛВ	Пр, Т, 3С
1.2	2		6		8	8	16	X	Л, ЛВ	Пр, Т, 3С
1.3	2		6		8	8	16	X	Л, ЛВ	Пр, 3С, КР
2.1			12		12	12	24	X	ЛВ, УИРС	Пр, Т, 3С
2.2	2		3		5	6	11	X	Л, ЛВ, УИРС	Пр, Т, 3С
2.3	2		3		5	6	11	X	Л, ЛВ, УИРС	Пр, Т, ЗС
2.4	2		3		5	6	11	X	Л, ЛВ, УИРС	Пр, Т, 3С
2.5	2		3		5	6	11	X	Л, ЛВ, Д, УИРС	Пр, Т, 3С
2.6	2	-	4		6	6	12	X	Л, ЛВ, Д, УИРС	Пр, 3С, КР
2.7			3		3	10	13	X	УИРС	Пр, Т, С, 3С
Зачёт				2	2		4			
итого:	16		49	2	67	77	144			

Список сокращений: традиционная лекция (Л), лекция-визуализация (ЛВ), учебно-исследовательская работа студента (УИРС), участие в научно-практических конференциях (НПК), УФ – учебный видеофильм.

Примерные формы текущего, в т.ч. рубежного контроля успеваемости (с сокращениями): T – тестирование, Πp – оценка освоения практических навыков (умений), 3C – решение ситуационных задач, KP – контрольная работа, K3 – контрольное задание, P – написание и защита реферата, C – собеседование по контрольным вопросам, \mathcal{A} – подготовка доклада и др.

III. Фонд оценочных средств для контроля уровня сформированности компетенций (Приложение $N\!\!\!$ 1)

1. Оценочные средства для текущего, в т.ч. рубежного контроля успеваемости

Оценочные средства для текущего и рубежного контроля успеваемости по модулю «Основы биостатистики»

Примеры заданий для текущего и рубежного контроля в тестовой форме:

Задания закрытой формы

- 1. Два события называют совместными, если:
 - 1. наступление одного из них в одном опыте обязательно сопровождается наступлением другого
 - 2. наступление одного из событий в одном опыте не исключает появление другого
 - 3. в условиях опыта произойдут только эти события и никакие другие
 - 4. если события не могут произойти одновременно в условиях данного опыта
 - 5. если оба события происходят одновременно
- 2. Вероятность произведения двух зависимых событий равна:
 - 1. P(AuB) = P(A)*P(B)
 - 2. P(AuB) = P(A)*P(B/A)
 - 3. P(AuB) = P(A)*P(B)*P(B/A)
 - 4. P(AuB) = P(A) * P(B) P(AB)
 - 5. P(AиB) = P(A)*P(B/A)
- 3. Математическим ожиданием дискретной случайной величины называется:
 - 1. совокупность всех значений этой величины с соответствующими вероятностями
 - 2. корень квадратный из дисперсии
 - 3. сумма произведений всех возможных значений случайной величины на соответствующие им вероятности
 - 4. сумма квадрата произведений всех возможных значений случайной величины на соответствующие им вероятности
 - 5. сумма всех возможных значений случайной величины, деленная на количество этих значений
- 4. Несмещенной оценкой генеральной дисперсии является:
 - 1. Выборочная дисперсия.
 - 2. Выборочное среднее.
 - 3. Исправленное выборочное среднее квадратичное отклонение.
 - 4. Исправленная выборочная дисперсия.
 - 5. Сумма отклонений значений выборки от среднего выборки.

Эталоны ответов

1	2	3	4
2)	1)	3)	4)

Задания открытой формы

Дополните:

- 1. Вероятность наступления события A, вычисленная при условии наступления другого события B, называется ______ вероятностью события A по отношению к событию B и обозначается P(A|B).
- 2. Случайные величины X и Y находятся в *корреляционной зависимости*, если изменение значений одной из них приводит к изменению ______другой.
- 3. Для случайных величин X и Y число $\rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$ называется коэффициентом

4. Допустим, что в результате N опытов (измерений) или выборки, наблюдались парные значения случайных величин X и Y: (x_1, y_1) , (x_2, y_2) , ..., (x_N, y_N) . Тогда множество точек плоскости с координатами (x_i, y_i) , i = 1 ... N, называется

Критерии оценки текущего тестового контроля:

правильный ответ - 1 балл; неправильный ответ - 0 баллов.

Критерии оценки рубежного тестового контроля

Рубежный тестовый контроль состоит из 25 тестов. Правильный ответ за один тест - 1 балл; неправильный ответ- 0 баллов. Тест считается сданным, если получено 18 и более баллов.

Примеры контрольных вопросов для собеседования:

- 1. Какие случайные события называются независимыми? Как вычислить вероятность произведения двух независимых событий?
- 2. Какие выборки называют репрезентативными? Как получить репрезентативную выборку?
- 3. Чем отличается точечная оценка некоторой числовой характеристики случайной величины от её интервальной оценки? Каким условия должны удовлетворять точечные оценки?

Критерии оценки при собеседовании:

полный и правильный ответ - 1 балл; неполный правильный ответ -0,5 балла; неправильный ответ - 0 баллов.

Примеры ситуационных задач для текущего и рубежного контроля:

Задача 1.

Завод отправил на аптечный склад партию из 5000 термометров. Вероятность повреждений каждого термометра в пути равна 0,0003. Какова вероятность того, что на аптечный склад прибудет не более двух поврежденных термометров?

Эталон ответа:

В данной задаче можно считать, что опыт состоит в случайном выборе термометра из этой партии. Обозначим через A событие, состоящее в том, что выбранный термометр поврежден. По условию задачи известна вероятность этого события p=0,0003. Поскольку опыт теоритически повторяется n=5000 раз, то мы имеем дело с повторением независимых испытаний (схемой опытов Бернулли).

Обозначим через $P_n(m)$ вероятность появления события A ровно m раз в n испытаниях. Пусть B – это событие «на аптечный склад прибудет не более двух поврежденных термометров». Это событие является суммой трех несовместных событий: «прибыло 0 поврежденных термометров», «прибыл 1 поврежденный термометр», «прибыло 2 поврежденных термометра». Тогда

$$P(B) = P_n(0) + P_n(1) + P_n(2).$$

Поскольку число $\mu = n \cdot p = 5000 \cdot 0,0003 = 1,5 < 10$, то для вычисления вероятностей $P_n(m)$ можно воспользоваться приближенной формулой Бернулли:

$$P_n(m) \approx \frac{\mu^m}{m!} \cdot e^{-\mu}.$$
 Имеем, $P_n(0) \approx \frac{1,5^0}{0!} \cdot e^{-1,5} = e^{-1,5} \approx 0,2231; P_n(1) \approx \frac{1,5^1}{1!} \cdot e^{-1,5} \approx 1,5 \cdot 0,2231 \approx 0,3347;$ $P_n(2) \approx \frac{1,5^2}{2!} \cdot e^{-1,5} \approx \frac{2,25}{2} \cdot 0,2231 \approx 0,2510.$ Итак, $P(B) \approx 0,2231 + 0,3347 + 0,2510 = 0,8088.$

Задача 2.

Допустим, что вероятность заболеть взрослому человеку в период эпидемии ОРВИ равна 0,3. Пусть *X* – количество заболевших в отделе, где работают 7 сотрудников.

- а) Составить ряд распределения случайной величины X.
- б) Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение $\sigma(X)$ величины X.
- в) Нарисовать многоугольник распределения.
- г) Вычислить вероятность, того что количество больных будет не меньше 3 и не больше 5

Эталон ответа:

а) Случайная величина X может принимать значения 0,1,2,3,4,5,6,7. По условию задачи величина X имеет биноминальное распределение (распределение Бернулли). А именно, вероятность события (X=m) вычисляется по формуле Бернулли:

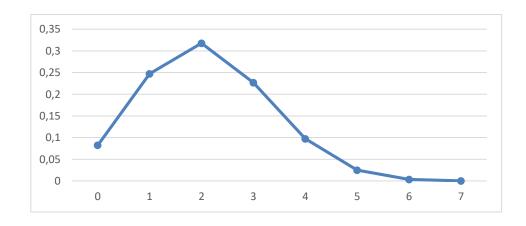
$$P(X = m) = P_7(m) = \frac{n!}{m!(n-m)!}p^m(1-p)^{n-m}.$$

Имеем,

$$P(X = 0) = P_7(0) = \frac{7!}{0! (7 - 0)!} 0.3^{0} \cdot (1 - 0.3)^{7 - 0} = (1 - 0.3)^{7} \approx 0.0824;$$

$$P(X = 1) = P_7(1) = \frac{7!}{1! (7 - 1)!} 0.3^{1} \cdot (1 - 0.3)^{7 - 1} = 7 \cdot 0.3^{1} \cdot (1 - 0.3)^{6} \approx 0.2471;$$

$$P(X = 2) = P_7(2) = \frac{7!}{2! (7 - 2)!} 0.3^{2} \cdot (1 - 0.3)^{7 - 2} = 21 \cdot 0.3^{2} \cdot (1 - 0.3)^{5} \approx 0.3177;$$


и т.д. Поэтому ряд распределения имеет вид:

X	0	1	2	3	4	5	6	7
P	0,0824	0,2471	0,3177	0,2269	0,0972	0,0250	0,0035	0,0002

б) Для случайной величины, имеющей биноминальное распределение, математическое ожидание и дисперсия вычисляются по формулам:

$$M(X) = n \cdot p, D(X) = np(1-p).$$
 Поэтому, $M(X) = 7 \cdot 0.3 = 2.1; D(X) = 7 \cdot 0.3 \cdot 0.7 = 1.47;$ $\sigma(X) = \sqrt{D(X)} = \sqrt{1.47} \approx 1.21.$

в) По оси OX откладываем значения случайной величины X, а по оси OY вероятности этих значений. Соседние точки соединяем отрезками прямой, получаем многоугольник распределения:

г) Для вычисления вероятности события ($3 \le X \le 5$) воспользуемся рядом распределения. Имеем,

Задача 3.

Известно, что для человека рН крови является случайной величиной, имеющей нормальное распределение с математическим ожиданием $\mu = 7.4$ и средним квадратичным отклонением $\sigma =$ 0,2. Найти вероятность того, что уровень рН находится между 7,35 и 7,45.

Эталон ответа:

Вероятность того, что нормально распределенная случайная величина Х примет значение из интервала (a, b), можно вычислить по формуле:

$$P(a < X < b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

 $P(a < X < b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right),$ где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-x^2/2} dx$ —функция Лапласа. Значения этой функция можно найти помощью таблиц. В нашем случае:

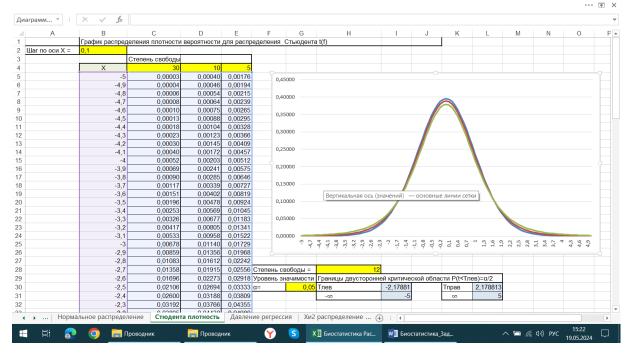
$$P(7,35 < X < 7,45) = \Phi\left(\frac{7,45-7,4}{0,2}\right) - \Phi\left(\frac{7,35-7,4}{0,2}\right) = \Phi(0,25) - \Phi(-0,25) = \Phi(0,25) + \Phi(0,25) = 2 \cdot \Phi(0,25).$$

По таблице находим $\Phi(0.25)=0.0987$, следовательно,

$$P(7.35 < X < 7.45) = 2 \cdot 0.0987 = 0.1974.$$

Примеры заданий для практических работ по темам 2.1-2.7:

Задание 1.


1. На отдельном листе Excel постройте таблицу значений распределения Стьюдента (столбцы В и С). В столбце В располагаются 101 значение Х. Значение Х с номером 51 должно быть равно 0. От него вверх равномерно с шагом h отсчитываются отрицательные значения и вниз положительные значения.

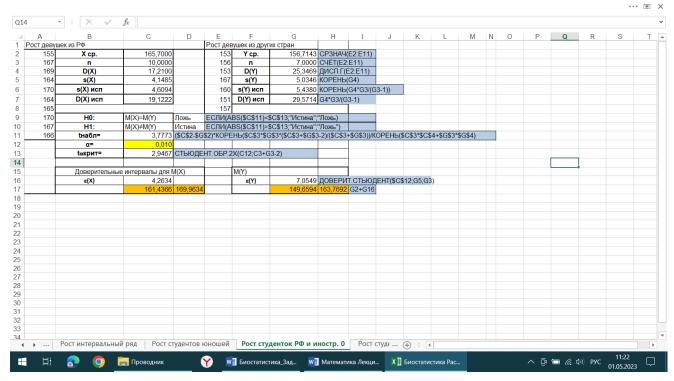
Значение шага h задается в отдельном поле (оно выделено желтым цветом). Оно должно меняться (см. Таблицу 1), при этом значения Х автоматически пересчитываются.

- 2. В отдельном поле поместите значение параметра k (выделено желтым). В столбце С расположите соответствующие значения t(к). При изменении параметра k таблица и графики должны автоматически пересчитываться.
- 3. По данным таблицы постройте график плотности распределения Стьюдента для степеней свободы k = 30:10:5.
- 4. Создайте калькулятор для расчета двусторонней критической области для этого распределения. При изменении значений степени свободы границы критической области должны автоматически пересчитываться. Рассчитайте границы двусторонней критической области для k=12 и уровня значимости $\alpha = 0.05$.

Эталон ответа:

Результаты расчетов представлены в таблице 1.

Задание 2.


Сделаны случайные выборки роста (в см) 10 российских (случайная величина X) и 7 иностранных студенток (случайная величина Y). Предполагаем распределение роста студенток в генеральных совокупностях нормальным, а соответствующие дисперсии равными.

- а) Найти числовые характеристики выборок и доверительные интервалы для генеральных средних для доверительной вероятности 0,99.
- b) Взяв в качестве гипотез H_0 : $\nu_X = \nu_Y$, H_1 : $\nu_X \neq \nu_Y$, оценить различается ли средний рост в генеральных совокупностях российских и иностранных студенток при уровне значимости 0.01.

Расчеты сделать на отдельном листе табличного процессора Excel. Реализовать возможность задавать произвольный уровень значимости (выделен желтым цветом). При его изменении истинность гипотез и доверительные интервалы должны автоматически пересчитываться.

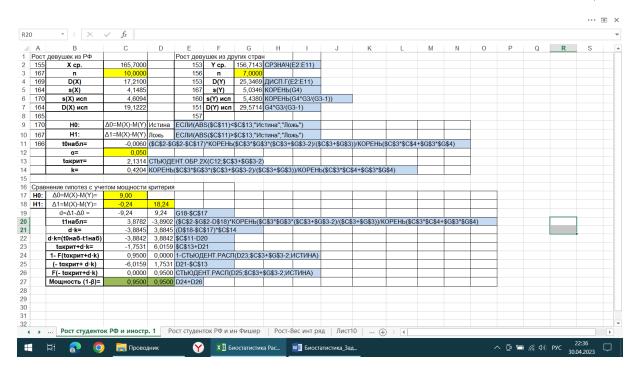
Эталон ответа:

Результаты расчетов и соответствующие формулы представлены в таблице 2.

Поскольку $|t_{0\text{набл}}| > t_{\alpha \kappa \text{рит}}$, то нулевая гипотеза отвергается, т.е. различие генеральных средних v_X и v_Y статистически значимо при уровне значимости 0,01.

Задание 3.

Для выборок задания 2 возьмите в качестве гипотез


$$\begin{aligned} H_0: \nu_X - \nu_Y &= \Delta_0, \\ H_1: \nu_X - \nu_Y &= \Delta_1. \end{aligned}$$

где
$$\Delta_0 = 9$$
, $\Delta_1 = -0.25$; 18,24.

При уровне значимости $\alpha=0.05$ вычислите мощность критерия $1-\beta$ для каждой гипотезы H_1 . Расчеты сделать на отдельном листе Excel. Реализовать возможность задавать произвольный уровень значимости (выделен желтым цветом). При его изменении истинность гипотез и мощность критерия должны автоматически пересчитываться.

Эталон ответа:

Результаты расчетов и соответствующие формулы представлены в Таблице 3.

Зеленым цветом выделены гипотезы для которых мощность критерия больше 0,95. Минимальное значение Δ_1 (которое больше 9), при котором она достигается равна 18,24.

Критерии оценки при решении ситуационных задач и заданий текущего контроля:

0 баллов - студент неправильно, решает задачу, допуская ошибки в расчетных формулах;

1 балла – студент правильно, аккуратно и оперативно решает задачу, не допуская ошибок, или допуская незначительные ошибки в расчетных формулах.

Критерии оценки при решении ситуационных задач и заданий рубежного контроля

Рубежный контроль в виде контрольной работы состоит из 3 ситуационных задач. Критерии оценки при решении ситуационных задач рубежного контроля:

0 баллов - студент неправильно, решает задачу, допуская грубые арифметические ошибки; не описан ход решения задачи.

- 1 балл студент решает задачу, допуская значительные арифметические ошибки; не описан ход решения задачи.
- 2 балла студент правильно, аккуратно и оперативно решает задачу, допуская арифметические ошибки; описан ход решения задачи.
- 3 балла студент правильно, аккуратно и оперативно решает задачу, не допуская ошибок; или допуская незначительные арифметические ошибки; описан ход решения задачи.

Примеры заданий в тестовой форме к темам 2.2-2.7.

Задания в тестовой форме для рубежного контроля уровня знаний по модулю «Прикладная биофизика»

Задания закрытой формы

- 1. Допустим, что в результате N опытов (измерений) наблюдались значения случайной величины X: $x_1, x_2 ..., x_n$, причем, $X \sim N(x, v_1, \sigma^2)$. Пусть случайная величина S^2 это выборочная дисперсия. Тогда случайная величина $\frac{nS^2}{\sigma^2}$ распределена по закону:
 - 1) $\chi^2(n)$.
 - 2) $\chi^2(n-1)$.
 - 3) $\chi^2(n+1)$.
 - 4) $\chi^2(n+2)$.
- 2. Если случайная величина X распределена по нормальному закону $N(x, \nu, \sigma^2)$ и \overline{X} это среднее выборки объема n, то случайная величина $\frac{(\overline{X}-\nu)\sqrt{n-1}}{S}$ имеет закон распределения Стьюдента:
 - 1) t(n+2).
 - 2) t(n+1).
 - 3) t(n).
 - 4) t(n-1).
- 3. Пусть даны случайные величины $V_1 \sim \chi^2(k_1)$ и $V_2 \sim \chi^2(k_2)$, тогда распределение случайной величины $\frac{V_1 k_2}{V_2 k_1}$ называется распределением:
 - 3.1. Стьюдента.
 - 3.2. Фишера-Снедекора.
 - 3.3. «хи крадрат».
 - 3.4. Кочрена.
- 4. Пусть X и Y- это нормально распределенные случайные величины, такие что $X \sim N(x, \nu_X, \sigma_X^2)$ и $Y \sim N(y, \nu_Y, \sigma_Y^2)$, \bar{S}_X^2 и \bar{S}_Y^2 это исправленные выборочные дисперсии, тогда статистика $\frac{\sigma_Y^2 \cdot \bar{S}_X^2}{\sigma_X^2 \cdot \bar{S}_Y^2}$ применяется для поверки гипотезы:
 - 4.1. О равенстве двух дисперсий.
 - 4.2. О равенстве двух и более дисперсий.
 - 4.3. О равенстве двух средних.
 - 4.4. О равенстве двух и более средних.

- 5. Если X и Y- это нормально распределенные случайные величины, такие что $X \sim N(x, \nu_X, \sigma_X^2)$ и $Y \sim N(y, \nu_Y, \sigma_Y^2)$, \bar{S}_X^2 и \bar{S}_Y^2 это исправленные выборочные дисперсии, тогда статистика $\frac{\sigma_Y^2 \cdot \bar{S}_X^2}{\sigma_X^2 \cdot \bar{S}_Y^2}$ имеет распределение:
 - 5.1. $F(n_1, n_2)$.
 - 5.2. $F(n_1 1, n_2 + 1)$.
 - 5.3. $F(n_1 + 1, n_2 1)$.
 - 5.4. $F(n_1 1, n_2 1)$.
- 6. Статистика Бартлета применяется для проверки гипотезы:
 - 6.1. о равенстве двух и более дисперсий произвольно распределенных случайных величин;
 - 6.2. о равенстве двух и более дисперсий нормально распределенных случайных величин;
 - 6.3. о равенстве двух и более средних произвольно распределенных случайных величин;
 - 6.4. о равенстве двух и более средних нормально распределенных случайных величин.
- 7. Вероятность ошибки 1 рода это:
 - 7.1. вероятность не принять гипотезу нулевую гипотезу, когда она верна;
 - 7.2. вероятность принять гипотезу принять нулевую гипотезу, когда она не верна, а верна альтернативная гипотеза;
 - 7.3. вероятность не принять гипотезу нулевую гипотезу, когда она не верна, а верна альтернативная гипотеза;
 - 7.4. вероятность принять альтернативную гипотезу, когда она не верна, а верна нулевая гипотеза;

8. Эталоны ответов

1	2	3	4	5	6	7
2)	4)	2)	1)	4)	2)	1)

Критерии оценки рубежного тестового контроля знаний по окончании модуля «Прикладная биофизика»:

Студентом даны правильные ответы на задания в тестовой форме (25 тестовых заданий):

Оценка рубежного контроля в тестовой форме

Менее 70% правильных ответов (менее 35)- 0 баллов

Более 70% правильных ответов (от 35 до 50) – число баллов равно числу правильных ответов.

Перечень практических навыков (умений), которые необходимо освоить студенту

Умение	Критерий оценки
Способен использовать основные биологические, физико-химические, химические, математические методы для разработки, исследований и экспертизы лекарственных средств, изготовления лекарственных препаратов	Зачтено - студент отвечает на теоретические вопросы, правильно или с небольшими огрехами выполняет задания, решает ситуационные задачи, демонстрирует логические способности обоснования решения. Не зачтено — студент не владеет теоретическим материалом и делает грубые ошибки при выполнении заданий, не может сделать логического заключения, не справляется с тестами или ситуационными задачами.

2. Оценочные средства для промежуточной аттестации по итогам освоения дисциплины (экзамен или зачёт)

2. Оценочные средства для промежуточной аттестации по итогам освоения дисциплины (зачёт)

Критерии балльно-рейтинговой системы оценки знаний студентов представлены в Приложении №4.

Студенты, не набравшие необходимого числа баллов по балльно-рейтинговой системе, сдают зачёт следующим порядком.

Критерии оценки по итогам промежуточной аттестации (зачёт)

Зачет по дисциплине является 2-х этапным.

1 этап – компьютерное тестирование по модулям «Статистика» и «Биофизика». При получении 70% и более правильных ответов из общего числа вопросов обоих тестов студент получает 2 балла и допускается ко второму этапу зачета (по билетам). Если набрано меньше 70%, выставляется «неудовлетворительно».

2 этап – решение 3-х ситуационных задач: одна задача - по основам биостатистики и две задачи - по прикладной биостатистике.

За каждую решенную задачу начисляется 1 балл.

Количество набранных баллов и отметка о зачете:

2 балла и ниже	3 балла и выше		
не зачтено	зачтено		

Содержание и уровень сложности зачетных задач соответствуют содержанию и уровню сложности задач, решаемых на практических занятиях. Задача считается решенной, если получен правильный ответ и приведено решение, из которого этот ответ следует.

Оценочные средства для промежуточной аттестации по итогам освоения дисциплины (зачёт) представлены по каждой компетенции в Приложении 1.

Фонды оценочных средств для проверки уровня сформированности компетенций по итогам

освоения дисциплины для каждой формируемой компетенции создается в соответствии с образцом, приведенным в Приложении N2 1.

IV. Учебно-методическое и информационное обеспечение дисциплины

1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины:

а). Основная литература:

- 1. Морозов Ю.В., Основы высшей математики статистики: учебник / Ю.В.Морозов. М.: «Издательство «Медицина», 2010. 232 с.: ил.
- 2. Греков Е.В. Математика. Учебник для студентов фармацевтических и медицинских вузов: учебник / Е.В. Греков. –М.: ГЭОТАР-Медиа, 2018. 301 с.: ил.

б). Дополнительная литература:

- 1. Основы высшей математики и математической статистики: учебник для вузов: 2-е изд., испр. / И. В. Павлушков, Л. В. Розовский, А. Е. Капульцевич. М.: ГЭОТАР-Медиа, 2007. 423 с.
- 2. Демидова А.А., Омельченко В.П. Математика: Компьютерные технологии в медицине. М. Феникс, 2008, 588 с.
- 3. Омельченко, Виталий Петрович Математика: компьютерные технологии в медицине: учебник / Виталий Петрович Омельченко, Александра Александровна Демидова. Ростов н/Д: Феникс, 2008. 588 с.

2. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- 1. Физика, математика, Модуль «Математика», Методические указания к выполнению лабораторного практикума для студентов/ Туровцев В.В., Богданов Ю.В., Бахтилов В.И., Корпусов О.М., Залетов А.Б., Гординская Е.Н., Крючкова Е.В.
- 2. Основы прикладной биостатистики: учебное пособие для студентов, обучающихся по программе "Фармация" / О.М. Виноградов. -Тверской гос. мед. ун-т. 1.58 Мб. Тверь: [б. и.], 2025. 104 с.: ил. Текст: электронный.

3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Профессиональные базы данных, информационные справочные системы и электронные образовательные ресурсы:

Клинические рекомендации: http://cr.rosminzdrav.ru/;

Электронный справочник «Информио» для высших учебных заведений (www.informuo.ru);

Университетская библиотека on-line (www.biblioclub.ru);

Информационно-поисковая база Medline (http://www.ncbi.nlm.nin.gov/pubmed);

База данных POLPRED (www.polpred.com);

Электронный библиотечный абонемент Центральной научной медицинской библиотеки Первого Московского государственного медицинского университета им. И.М. Сеченова // http://www.emll.ru/newlib/;

Бесплатная электронная библиотека онлайн «Единое окно доступа к образовательным ресурсам» // http://window.edu.ru/;

Официальный сайт Министерства здравоохранения Российской Федерации // https://minzdrav.gov.ru/;

Российское образование. Федеральный образовательный портал. //http://www.edu.ru/;

- 4. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем
 - 4.1. Перечень лицензионного программного обеспечения:
 - 1. Microsoft Office 2016:
 - Access 2016;
 - Excel 2016;
 - Outlook 2016;
 - PowerPoint 2016;
 - Word 2016;
 - Publisher 2016;
 - OneNote 2016.
 - 2. Программное обеспечение для тестирования обучающихся SUNRAV TestOfficePro;
 - 3. Система дистанционного обучения Moodle;
 - 4. Платформа Microsoft Teams.
- 4.2. Перечень электронно-библиотечных систем (ЭБС):
 - 1. www.studmedlib.ru Консультант студента. Электронная библиотека;
 - 2. Консультант врача. Электронная медицинская библиотека [Электронный ресурс]. Москва: ГЭОТАР-Медиа. Режим доступа: www.geotar.ru;
 - 3. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)
- 5. Методические указания для обучающихся по освоению дисциплины.
- 1. Физика, математика. Модуль «Математика», Методические указания к выполнению лабораторного практикума для студентов/ Туровцев В.В., Богданов Ю.В., Бахтилов В.И., Корпусов О.М., Залетов А.Б., Гординская Е.Н., Крючкова Е.В.
- 2. Основы прикладной биостатистики: учебное пособие для студентов, обучающихся по программе "Фармация" / О.М. Виноградов. -Тверской гос. мед. ун-т. 1.58 Мб. Тверь: [б. и.], 2025. 104 с.: ил. Текст: электронный.
- V. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Представлены в Приложении № 2

VI. Научно-исследовательская работа студента

Научно-исследовательская работа студентов представлена: реферативной работой; проведением научных исследований с последующим выступлением на итоговых научных студенческих конференциях в Твери и в других городах России; публикацией в сборниках студенческих работ; кафедральных изданиях и Верхневолжском медицинском журнале.

VII. Сведения об обновлении рабочей программы дисциплины

Представлены в Приложении № 3

Фонды оценочных средств для проверки уровня компетенций (части компетенций) для промежуточной аттестации по итогам освоения дисциплины

ОПК-1. Способен использовать основные биологические, физико-химические, химические, математические методы для разработки, исследований и экспертизы лекарственных средств, изготовления лекарственных препаратов

ИДОПК-1-4 Применяет математические методы и осуществляет математическую обработку данных, полученных в ходе разработки лекарственных средств, а также исследований и экспертизы лекарственных средств, лекарственного растительного сырья и биологических объектов

Модуль «Основы биостатистики»

Задания комбинированного типа с выбором верного ответа

1. Математическое ожидание дискретной случайной величины рассчитывается по формуле:

$$M(x) = \int_{-\infty}^{\infty} xf(x)dx$$
1)
$$M(x) = \int_{-\infty}^{\infty} [x - D(x)]^{2} f(x)dx$$
2)
$$M(x) = \sum_{i=1}^{n} [x_{i} - D(x)]^{2} P_{i}$$
3)
$$M(x) = \sum_{i=1}^{n} x_{i} \cdot P_{i}$$
4)

2. Математическое ожидание непрерывной случайной величины рассчитывается по формуле:

$$M(x) = \int_{-\infty}^{\infty} xf(x)dx$$
1)
$$M(x) = \int_{-\infty}^{\infty} [x - D(x)]^{2} f(x)dx$$
2)
$$M(x) = \sum_{i=1}^{n} [x_{i} - D(x)]^{2} P_{i}$$
3)
$$M(x) = \sum_{i=1}^{n} x_{i} \cdot P_{i}$$
4)

3. Среднее квадратичное отклонение дискретной случайной величины рассчитывается по формуле:

$$\sigma(x) = \sqrt{\int_{-\infty}^{\infty} x f(x) dx}$$
1)
$$\sigma(x) = \sqrt{\int_{-\infty}^{\infty} [x - M(x)]^{2} f(x) dx}$$
2)
$$\sigma(x) = \sqrt{\sum_{i=1}^{n} [x_{i} - M(x)]^{2} P_{i}}$$
3)

$$\sigma(x) = \sqrt{\sum_{i=1}^{n} x_i \cdot P_i}$$

4. Среднее квадратичное отклонение непрерывной случайной величины рассчитывается по формуле:

$$\sigma(x) = \sqrt{\int_{-\infty}^{\infty} x f(x) dx}$$
1)
$$\sigma(x) = \sqrt{\int_{-\infty}^{\infty} [x - M(x)]^2} f(x) dx$$
2)
$$\sigma(x) = \sqrt{\sum_{i=1}^{n} [x_i - M(x)]^2} P_i$$
3)
$$\sigma(x) = \sqrt{\sum_{i=1}^{n} x_i \cdot P_i}$$
4)

- **5.** Правильная последовательность следующих этапов статистической работы: 1. обработка данных , 2. сбор данных , 3. выводы, прогнозы.
 - 1) 123
 - 2) 132
 - 3) 231
 - 4) 213
- 6. Коэффициент Стьюдента находят из таблицы по значениям:
 - 1) доверительной вероятности и среднего значения
 - 2) уровня значимости и среднеквадратического отклонения
 - 3) доверительной вероятности и объёма выборки
 - 4) доверительной вероятности и уровня значимости
- 7. Зависимость называется функциональной, если:
 - 1) одному значению одной переменной величины соответствует множество значений другой
 - 2) одному значению одной переменной величины соответствует одно значение другой
 - 3) одному значению одной переменной величины соответствует два значения другой
 - 4) одному значению одной переменной величины не соответствует ни одно значение другой
- **8.** Если одному значению одной переменной соответствует множество значений другой, то такая зависимость называется:
 - 1) функциональной
 - 2) обратно пропорциональной
 - 3) статистической
 - 4) прямо пропорциональной
- 9. Метод регрессии позволяет установить:
 - 1) зависимость между изменчивостью признаков
 - 2) меру тесноты связи двух переменных
 - 3) количественное изменение среднего значения одной величины по мере изменения другой
 - 4) доверительную вероятность и среднее значение
- 10. Линейный коэффициент корреляции определяется по формуле:

$$r = \frac{\overline{X \cdot Y} - \overline{X} \cdot \overline{Y}}{\sigma_x \cdot \sigma_y}$$
1)
$$r = \frac{n \sum xy - \sum x \cdot \sum y}{\sqrt{n \sum x^2 - (\sum x)^2 - x\sqrt{n \sum y^2 - (\sum y)^2}}}$$
2)

3)
$$r = 1 - \frac{6\sum (x_i - y_i)^2}{n(n^2 - 1)}$$
$$r = \frac{\sigma\sqrt{n - 2}}{1 - i^2}$$

$$r = \frac{\sigma\sqrt{n-2}}{1-i^2}$$

$$\sum_{i=1}^{n} x_{i}$$

- **11.** По формуле n находят:
 - 1) дисперсию выборки
 - 2) среднее значение выборки
 - 3) генеральную совокупность
 - 4) среднее квадратичное отклонение

$$\sum_{i=1}^{n} (x_i - \overline{x})^2$$

- **12.** По формуле *n* находят:
 - 1) среднее значение выборки
 - 2) дисперсию выборки
 - 3) среднее отклонение случайной величины
 - 4) коэффициент корреляции
- 13. Статистическая совокупность, которая включает в себя все изучаемые объекты, называется:
 - 1) представительной выборкой
 - 2) генеральной совокупностью
 - 3) статистическим рядом
 - 4) вариационным рядом
- 14. Статистическая совокупность, которая включает в себя не все изучаемые объекты, а лишь их часть, называется:
 - 1) выборкой
 - 2) генеральной совокупностью
 - 3) статистическим рядом
 - 4) вариационным рядом
- 15. Интервал возможных значений искомого параметра, в котором могут находиться с некоторой вероятностью его значения, называется:
 - 1) доверительным интервалом
 - 2) вариационным интервалом
 - 3) корреляционным интервалом
 - 4) представительным интервалом

Эталоны правильных ответов к заданиям в тестовой форме

1	2	3	4	5	6	7	8	9	10
4)	1)	3)	2)	4)	3)	2)	3)	3)	1)
11	12	13	14	15					
2)	2)	2)	1)	1)					

Задания закрытого типа на установление соответствия

Задание № 1

Прочитайте текст и установите соответствие

Соотнесите классификацию события и её вероятность р

К каждой позиции, данной в левом столбце, подберите соответствующую позицию из правого столбца:

Вид со	Вид события		гность события
a	Случайное	1	<i>p</i> =1
б	Достоверное	2	p=0
В	Невозможное	3	0 <p<1< td=""></p<1<>

Запишите выбранные цифры под соответствующими буквами

a	б	В
3)	1)	2)

Задание № 2

Прочитайте текст и установите соответствие

Вероятность события A равна p.

К каждой позиции, данной в левом столбце, подберите соответствующую позицию из правого столбца:

Событ	тие	Его веј	роятность
a	Событие противоположное событию А	1	p(1-p)
б	Наступление в двух испытаниях события А	2	p^3
В	Наступление в трёх испытаниях события А	3	p^2
Γ	Последовательное наступление события А и	4	<i>1-p</i>
	противоположного ему события		

Запишите выбранные цифры под соответствующими буквами

a	б	В	Γ
4)	3)	2)	1)

Задание № 3

Прочитайте текст и установите соответствие

Соотнесите характер корреляционной связи и значение коэффициента линейной корреляции r.

К каждой позиции, данной в левом столбце, подберите соответствующую позицию из правого столбца:

Значение коэффициента линейной корреляции			Характер корреляционной связи				
a	r <0,4	1	Линейная корреляционная связь тесная				
б	0,4≤ r ≤0,7	2	Линейная корреляция отсутствует				
В	0,7≤ <i>r</i> ≤1	3	Линейная функциональная связь				
Γ	r =1	4	Линейная корреляционная связь слабая				

Запишите выбранные цифры под соответствующими буквами

a	δ	В	Γ
2)	4)	1)	3)

Задания закрытого типа на установление последовательности

Задание 4

Прочитайте текст и установите последовательность

Установите последовательность действий при построении доверительного интервала по полученной выборке при объёме выборки, меньше 30.

1.	Определение полуширины интервала с помощью коэффициента Стьюдента
2.	Расчёт исправленного среднего квадратичного отклонения
3.	Определение максимального и минимального значений интервала
4.	Расчёт выборочного среднего

Запишите соответствующую последовательность цифр, определяющих порядок их появления слева направо 4) 2) 1) 3)

Задание 5

Прочитайте текст и установите последовательность

Установите последовательность действий при первичной статистической обработки выборки с малым числом вариант

1.	Расчёт относительных частот
2.	Построение полигона частот или относительных частот
3.	Определения вариант
4.	Подсчёт частот встречаемости вариант в выборке

Запишите соответствующую последовательность цифр, определяющих порядок их появления слева направо 3) 4) 1) 2)

Задание 6

Прочитайте текст и установите последовательность

Установите последовательность действий при первичной статистической обработки выборки с большим числом вариант

1.	Расчёт относительных частот и плотности относительных частот
2.	Определение максимального и минимального значений признака
3.	Построение гистограммы относительных частот или плотности относительных частот
4.	Подсчёт частот попадания значений в каждый интервал
5.	Разбитие всего диапазона значений на равные интервалы

Запишите соответствующую последовательность цифр, определяющих порядок их появления слева направо 2) 5) 4) 1) 3)

Задания комбинированного типа с выбором верного ответа и обоснованием выбора из предложенных

Задание 7

Прочитайте текст, укажите правильный ответ и запишите аргументы, обосновывающие выбор ответа Чему равна вероятность исцеления больного раком, если вероятность излечения при однократном применения определённого метода 0,6, а применить этот метод можно не более 2-х раз

- a. 0,36
- б. 0,84
- в. 0,16

- г. 0,7
- л. 0.9

Ответ: б).

Обоснование выбора: Вероятность излечения при первом применении метода равна 0,6.

Вероятность излечения при втором применении метода, если первый раз он не помог рана равна 0,6*0,4=0,24. Вероятность излечения при первом применении метода или при втором его применении равна сумме 0,6+0,24=0,84.

Задание 8

Прочитайте текст, укажите правильный ответ и запишите аргументы, обосновывающие выбор ответа Чему равна равно математическое ожидание дискретной случайной величины, ряд которой представлен ниже.

X	1	3	5
p	0,5	0,3	0,2

- a. 2.4
- б. 3
- в. 9
- г. 1
- д. 1.5

Ответ: а).

Обоснование выбора: Математическое ожидание этой случайной величины равно 1*0,5+3*0,3+5*0,2=2,4.

Задания открытого типа с кратким ответом/ вставить термин, словосочетание ..., дополнить предложенное

Залание 9

Прочитайте текст и запишите развернутый обоснованный ответ.

С точки зрения теории вероятностей курение и заболевание раком лёгких являются ... событиями.

Ответ: Курение и заболевание раком лёгких являются *зависимыми* событиями. Это следует из многочисленных статистических исследований.

Задания открытого типа с развернутым ответом

Задание 10

Прочитайте текст и запишите развернутый обоснованный ответ.

Охарактеризуйте статистическую зависимость между возрастом и ростом человека в младенческом возрасте. Ответ: Между возрастом и ростом человека в младенческом возрасте существует *тесная корреляционная зависимость*, это следует из статистических исследований.

Практико-ориентированные задания

Задание 11.

Изучается вероятность заболеваемости взрослого населения города во время некоторой вирусной эпидемии. Для этого делается случайная выборка 2000 жителей.

- 1. Какая случайная величина изучается?
- 2. Что является генеральной совокупностью в этом случае?
- 3. Укажите параметры, от которых зависит данная случайная величина и процентное соотношение которых нужно соблюсти в выборке.

Эталон ответа:

- 1. Изучаемая случайная величина чина X будет принимать два значения 0 (не заболел) и 1 (заболел). Нас интересует значение вероятности P(X=1).
 - 2. Генеральной совокупностью является все население города старше 18 лет.
- 3. В качестве параметров выборки нужно выбрать процентное соотношение групп риска (люди старшего возраста, медицинские работники, учителя, преподаватели, студенты и т.д.).

Задание 12.

Для исследования роста (в см) мальчиков в возрасте 2-х лет сделана следующая выборка объёмом n = 30: 92, 91, 96, 93, 97, 93, 91, 92, 90, 97, 95, 94, 92, 98, 96, 90, 95, 93, 94, 89, 91, 89, 96, 94, 94, 92, 93, 95, 87, 94.

- 1. Построить статистический ряд распределения.
- 2. Построить статистический вариационный ряд распределения.
- 3.Вычислить числовые характеристики: среднее значение выборки \bar{x} , дисперсию выборки s^2 , среднее квадратичное отклонение выборки s, медиану Me.

Эталон ответа:

- 1. Статистический ряд этой выборки имеет вид: 87,89,89,90,90,91,91,91,92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 95, 95, 95, 96,96,96,97,97,98.
- 2. Объем выборки n=30, количество вариант k=11. Вариационный ряд запишем в виде таблицы значений x_i статистического ряда, соотвествующих частот m_i и относительных частот $p_i^* = \frac{m_i}{n}$:

Таблица 1.

												Суммы
x_i	887,00	889,00	990,00	991,00	992,00	993,00	994,00	995,00	996,00	997,00	998,00	
												330
m_i	11,00	22,00	22,00	33,00	44,00	44,00	55,00	33,00	33,00	22,00	11,00	
ale												11
p_i^*	00,033	00,067	00,067	00,100	00,133	00,133	00,167	00,100	00,100	00,067	00,033	

3. Числовые характеристики выборки вычисляем по следующим формулам:

$$ar{x} = p_1^* x_1^* + p_2^* x_2^* + \dots + p_k^* x_k^* \approx 93,1.$$
 $s^2 = p_1^* (x_1^* - ar{x})^2 + p_2^* (x_2^* - ar{x})^2 + \dots + p_k^* (x_k^* - ar{x})^2 \approx 6,76.$
 $s = \sqrt{s^2} \approx 2,64.$
 $Me = 93.$

Задание 13.

Для исследования роста (в см) мальчиков в возрасте 2-х лет сделана следующая выборка объёмом n = 30: 92, 91, 96, 93, 97, 93, 91, 92, 90, 97, 95, 94, 92, 98, 96, 90, 95, 93, 94, 89, 91, 89, 96, 94, 94, 92, 93, 95, 87, 94.

- 1. Представить выборку в виде интервального ряда распределения, разбив статистический ряд на 6 равных интервалов.
- 2. Построить гистограмму плотности относительных частот.
- 3. Пусть случайная величина X рост мальчика в возрасте 2-х лет. По гистограмме определить вероятности P (93 < X < 95) и P(X > 95).

Эталон ответа:

1. Для построения интервального ряда используем Таблицу 1 из задания 2. Учитывая, что количество вариант k=11, возьмем 6 интервалов (отрезков) одинаковой длины $\Delta=2$. Если какое-то значение попало в два интервала, то одна половина его частоты учитывается в одном интервале, а другая во втором. Интервальный ряд запишем в виде таблицы интервалов $[x_i; x_{i+1}]$, соответствующих частот m_i , относительных частот $p_i^* = \frac{m_i}{n}$ и плотностей относительных частот $\frac{p_i^*}{n}$:

$[x_i; x_{i+}]$	[87;89]	[89;91]	[91;93]	[93;95]	[95;97]	[97;99]	Суммы
m_i	2	4,5	7,5	8,5	5,5	2	30
$p_i^{\ *}$	0,067	0,150	0,250	0,283	0,183	0,067	1
$p_i{}^*$							
Δ	0,033	0,075	0,125	0,142	0,092	0,033	0,5

2. Для построения гистограммы относительных частот по оси X откладываем интервалы $[x_i; x_{i+1}]$. Над каждым интервалом строим прямоугольник высотой $\frac{{p_i}^*}{\Lambda}$ (Рис. 1).

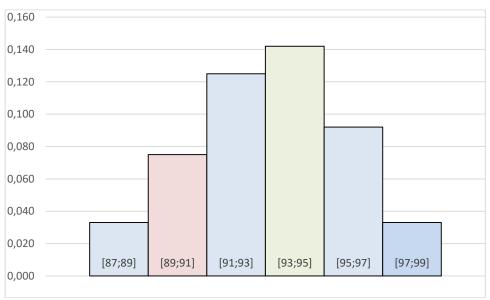


Рис. 1.

3. Поскольку верхняя граница гистограммы плотности относительных частот — это график эмпирической функции плотности вероятностей случайной величины X, то вероятность P (93 < X < 95) равна площади прямоугольника над интервалом [93;95]. Поэтому $P(93 < X < 95) \approx 2 \cdot 0.142 = 0.000$ 0,284. По той же причине, вероятность P(X > 95) равна сумме площадей прямоугольников, построенных над интервалами [95;97] и [97;99]. Значит,

$$P(X > 95) = P(95 < X < 97) + P(97 < X < 99) \approx 2 \cdot 0.092 + 2 \cdot 0.033 = 0.25.$$

Задание 14.

При исследовании индекса массы тела юношей первого курса сделана случайная выборка объёма n=30 с параметрами $\bar{x} = 25,82$ и s = 2,74. Сделайте интервальную оценку генеральной средней \bar{x}_r с доверительными вероятностями 0,95 и 0,99, используя распределение Стьюдента.

Эталон ответа:

1. Для расчета радиуса доверительного интервала Δx используем формулу: $\Delta x = t_{n-1,p} \frac{s_{\text{испр}}}{\sqrt{n}}.$

$$\Delta x = t_{n-1,p} \frac{s_{\text{испр}}}{\sqrt{n}}$$

2. Найдем исправленное среднее квадратичное отклонение $s_{\text{испр}}$:

$$s_{\text{испр}} = \sqrt{\frac{n}{n-1}} \cdot s = \sqrt{\frac{30}{29}} \cdot 2,74 \approx 2,79.$$

3. Для доверительной вероятности p=0.95 и числа степеней свободы n-1=29 по таблицам распределения Стьюдента (или программным способом) находим коэффициент Стьюдента $t_{29:0.95} =$ 2,05. Поэтому $\Delta x = t_{n-1,p} \frac{s_{\text{испр}}}{\sqrt{n}} \approx 2,05 \cdot \frac{2,79}{\sqrt{30}} \approx 1,04$. Следовательно, доверительный интервал для генеральной средней в этом случае имеет вид:

 $(\bar{x} - \Delta x; \bar{x} + \Delta x) = (25.82 - 1.04; 25.82 + 1.04) = (24.78; 26.86).$ Итак, $\bar{x}_r = 25,82 \pm 1,04$ с доверительной вероятностью 0,95.

4. Для доверительной вероятности p=0.99 и числа степеней свободы n-1=29 по таблицам распределения Стьюдента (или программным способом) находим коэффициент Стьюдента $t_{29:0.99} =$ 2,76. Поэтому $\Delta x = t_{n-1,p} \frac{s_{\text{испр}}}{\sqrt{n}} \approx 2,76 \cdot \frac{2,79}{\sqrt{30}} \approx 1,41$. Следовательно, доверительный интервал для генеральной средней в этом случае имеет вид:

$$(\bar{x}-\Delta x;\bar{x}+\Delta x)=(25,82-1,41;25,82+1,41)=(24,41;27,23).$$
 Итак, $\bar{x}_\Gamma=25,82\pm1,41$ с доверительной вероятностью 0,99.

Задание 15.

В течении двух часов сделано пять измерений вязкости крови пациента: 4,90; 4,80; 4,85; 4,70; 4,75. Оценить истинное значение вязкости с доверительной вероятностью 0,95.

Эталон ответа:

- 1. В данном случае сделана случайная выборка объемом n=5 значений случайной величины Xвязкости крови пациента. В качестве истинного значения вязкости нужно взять математическое ожидание величины X: $\mu = M(X)$.
- 2. Вычислим выборочное среднее \bar{x} и выборочное среднее квадратичное отклонение s:

ислим выборочное среднее
$$x$$
 и выборочное среднее квадратичное отклонение s :
$$\bar{x} = \frac{\frac{4,90+4,80+4,85+4,70+4,75}{5}}{5} = 4,8.$$

$$s^2 = \frac{(4,9-4,8)^2+(4,8-4,8)^2+(4,85-4,8)^2+(4,7-4,8)^2+(4,75-4,8)^2}{5} \approx 0,005.$$

$$s = \sqrt{s^2} = \sqrt{0,005} \approx 0,071.$$
 3. Для расчета радиуса доверительного интервала Δx используем формулу:

$$\Delta x = t_{n-1,p} \frac{s_{\text{испр}}}{\sqrt{n}}.$$

4. Найдем исправленное среднее квадратичное отклонение $s_{\text{испр}}$:

$$s_{\text{испр}} = \sqrt{\frac{n}{n-1}} \cdot s = \sqrt{\frac{5}{4}} \cdot 0,071 \approx 0,079.$$

5. Для доверительной вероятности p=0.95 и числа степеней свободы n-1=4 по таблицам распределения Стьюдента (или программным способом) находим коэффициент Стьюдента $t_{4;0,95} =$ 2,78. Поэтому $\Delta x = t_{n-1,p} \frac{s_{\text{испр}}}{\sqrt{n}} \approx 2,78 \cdot \frac{0,079}{\sqrt{5}} \approx 0,10.$

Итак, $\mu = 4,80 \pm 0,10$ с доверительной вероятностью 0,95.

Задание 16.

Исследуется зависимость систолического и диастолического давлений у студентов юношей первого курса. Для этого у пятнадцати случайно выбранных студентов первого курса измерено систолическое и диастолическое давления. Результаты приведены в Таблице 3.

Таблица 3.

73		69	78	75	71	80	74	70	79	70	68	84	82	66	80
123	4	119	138	120	114	120	125	116	129	126	118	124	126	116	120

- 1. Построить корреляционное поле данной выборки.
- 2. Рассчитать выборочный коэффициент корреляции.

Сделать вывод о наличии корреляционной связи между систолическим и диастолическим давлениями.

3. Найти уравнения регрессии. Нарисовать линии регрессии.

Эталон ответа:

1. Пусть случайная величина X —это диастолическое давление некоторого студента и случайная величина У – его систолическое давление. Тогда в Таблице 3 представлена выборка пятнадцати парных значений случайных величин X и Y вида: (x_1, y_1) , (x_2, y_2) , ..., (x_N, y_N) , N=15. Построим две перпендикулярные оси OX и OY. Найдем наименьшие и наибольшие значения величин X и Y в выборке:

 $\min(x_i) = 66$; $\max(x_i) = 84$; $\min(y_i) = 114$; $\max(y_i) = 138$. Поэтому в качестве промежутка значений по оси OX можно взять интервал (60;90), а в качестве промежутка значений по оси OY интервал (100;140). Выберем в качестве единицы масштаба по осям 5 единиц давления (Рис. 2).

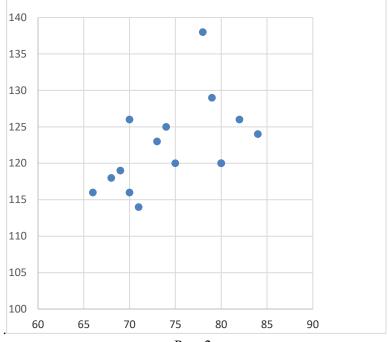


Рис. 2.

Отметим в построенной системе координат точки (x_i, y_i) , $i = 1 \dots 15$. Получаем корреляционное поле (Рис. 2).

2. Для расчета выборочного коэффициента линейной корреляции предварительно рассчитаем выборочные средние \bar{x} , \bar{y} и \bar{xy} , выборочные средние квадратичные отклонения s_X и s_Y , а также выборочную ковариацию \mathcal{C}_{XY} :

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_N}{N} \approx 74,60.$$

$$s_X^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_N - \bar{x})^2}{N} \approx 29,31.$$

$$\bar{y} = \frac{y_1 + y_2 + \dots + y_N}{N} \approx 122,27.$$

$$s_Y^2 = \frac{(y_1 - \bar{y})^2 + (y_2 - \bar{y})^2 + \dots + (y_N - \bar{y})^2}{N} \approx 34,86.$$

$$\bar{x}_Y = \frac{x_1 y_1 + x_2 y_2 + \dots + x_N y_N}{N} \approx 9137,13.$$

$$C_{XY} = \frac{x_1 y_1 + x_2 y_2 + \dots + x_N y_N}{N} \approx 9137,13.$$
 Рассчитаем выборочный коэффициент линейной корреляции:

$$r_{XY} = \frac{C_{XY}}{s_X s_Y} \approx 0.50.$$

Поскольку $0.4 < r_{XY} < 0.7$, то делаем вывод, что имеет место прямая средняя корреляция.

3. Выборочное уравнение линейной регрессии Y на X найдем по формуле: $y = \frac{r_{XY} \cdot s_Y}{s_Y} (x - \bar{x}) + \bar{y}, \text{ или}$

$$y = \frac{r_{XY} \cdot s_{Y}}{s_{X_{X}}} x + \bar{y} - \frac{r_{XY} \cdot s_{Y}}{s_{X}} \bar{x}.$$
 Имеем,
$$a_{1} = \frac{r_{XY} \cdot s_{Y}}{s_{X}} \approx \frac{0.5 \cdot 5.90}{5.41} \approx 0.55;$$

$$b_{1} = \bar{y} - \frac{r_{XY} \cdot s_{Y}}{s_{X}} \bar{x} \approx 122,27 - 0.55 \cdot 74,60 \approx 81,24.$$

Итак, y = 0.55x + 81.24. Нарисуем прямую, задаваемую этим уравнением на Рис 2. Для этого найдем две точки на этой прямой соответствующие минимальному и максимальному значениям x_i в выборке:

x	66	84
y	117,54	127.44

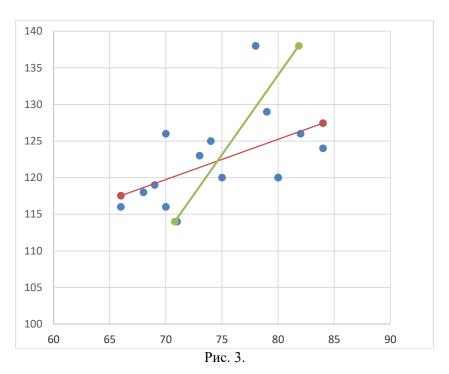
Точки с координатами (66;117,54) и (84;127,44) отметим на Рис.2 и проведем через них прямую (Рис.

Выборочное уравнение линейной регрессии Х на У найдем по формуле:

$$x = \frac{r_{XY} \cdot s_X}{s_Y} (y - \bar{y}) + \bar{x}, \text{ или}$$

$$x = \frac{r_{XY} \cdot s_X}{s_Y} y + \bar{x} - \frac{r_{XY} \cdot s_X}{s_Y} \bar{y}.$$

$$a_2 = \frac{r_{XY} \cdot s_X}{s_Y} \approx \frac{0.5 \cdot 5.41}{5.90} \approx 0.46;$$


$$b_2 = \bar{x} - \frac{r_{XY} \cdot s_X}{s_Y} \bar{y} \approx 74.60 - 0.46 \cdot 122,27 \approx 18,36.$$

Значит, x = 0.46y + 18.36.

Найдем две точки на этой прямой, соответствующие минимальному и максимальному значениям y_i в выборке:

у	114	138
x	70,80	81,84

Точки с координатами (70,80;114) и (81,84;138) отметим на Рис.2 и проведем через них прямую (Рис.

Модуль «Прикладная биостатистика»

Задания комбинированного типа с выбором верного ответа

- 1. Если Х и У- это независимые и нормально распределенные случайные величины, такие что $X \sim N(x, \nu_X, \sigma_X^2)$ и $Y \sim N(y, \nu_Y, \sigma_Y^2)$, то их сумма Z = X + Y имеет распределение:

 - 1.1. $N(z, \nu_X + \nu_Y, \sigma_X^2 + \sigma_Y^2)$. 1.2. $N(z, \nu_X + \nu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2})$. 1.3. $N(z, \nu_X + \nu_Y, \sigma_X^2, \sigma_Y^2)$.

 - 1.4. $N(z, \nu_X \cdot \nu_Y, \sigma_X \cdot \sigma_Y)$.

- 2. Допустим, что в результате N опытов (измерений) наблюдались значения случайной величины $X: x_1, x_2 ..., x_n$, причем, $X \sim N(x, v_1, \sigma^2)$. Тогда среднее значение этой выборки \overline{X} распределено по закону:
 - 2.1. $N\left(x, \nu, \frac{\sigma}{n}\right)$.
 - 2.2. $N(x, \frac{\nu}{n}, \frac{\sigma}{n})$.
 - 2.3. $N(x, v, \frac{\sigma^2}{n})$.
 - 2.4. $N(x, \frac{v}{n}, \frac{\sigma^2}{n})$.
- 3. Если случайные величины Y_1 и Y_2 независимы и $Y_1 \sim \chi^2(k_1)$, $Y_2 \sim \chi^2(k_2)$, то их сумма $Y_1 + Y_2$ имеет распределение:
 - 3.1. $\chi^2(k_1+k_2)$.
 - 3.2. $\chi^2(k_1 \cdot k_2)$.
 - 3.3. $\chi^2(k_1) + \chi^2(k_2)$.
 - 3.4. $\chi^2(k_1) \cdot \chi^2(k_2)$.
- 4. Допустим, что в результате N опытов (измерений) наблюдались значения случайной величины X: $x_1, x_2 ..., x_n$, причем, $X \sim N(x, v_1, \sigma^2)$. Пусть случайная величина S^2 это выборочная дисперсия. Тогда случайная величина $\frac{nS^2}{\sigma^2}$ распределена по закону:
 - 4.1. $\chi^2(n)$.
 - 4.2. $\chi^2(n-1)$.
 - 4.3. $\chi^2(n+1)$.
 - 4.4. $\chi^2(n+2)$.
- 5. Если случайная величина X распределена по нормальному закону $N(x, \nu, \sigma^2)$ и \overline{X} это среднее выборки объема n, то случайная величина $\frac{(\overline{X}-\nu)\sqrt{n-1}}{S}$ имеет закон распределения Стьюдента:
 - 5.1. t(n+2).
 - 5.2. t(n+1).
 - 5.3. t(n).
 - 5.4. t(n-1).
- 6. Пусть даны случайные величины $V_1 \sim \chi^2(k_1)$ и $V_2 \sim \chi^2(k_2)$, тогда распределение случайной величины $\frac{V_1 k_2}{V_2 k_1}$ называется распределением:
 - 6.1. Фишера-Снедекора.
 - 6.2. Стьюдента.
 - 6.3. «хи крадрат».
 - 6.4. Кочрена.

- 7. Пусть X и Y- это нормально распределенные случайные величины, такие что $X \sim N(x, \nu_X, \sigma_X^2)$ и $Y \sim N(y, \nu_Y, \sigma_Y^2)$ и \bar{S}_X^2 и \bar{S}_Y^2 это исправленные выборочные дисперсии, тогда статистика $\frac{\sigma_Y^2 \cdot \bar{S}_X^2}{\sigma_X^2 \cdot \bar{S}_Y^2}$ применяется для поверки гипотезы:
 - 7.1. О равенстве двух дисперсий.
 - 7.2. О равенстве двух и более дисперсий.
 - 7.3. О равенстве двух средних.
 - 7.4. О равенстве двух и более средних.
- 8. Если X и Y- это нормально распределенные случайные величины, такие что $X \sim N(x, \nu_X, \sigma_X^2)$ и $Y \sim N(y, \nu_Y, \sigma_Y^2)$ и \bar{S}_X^2 и \bar{S}_Y^2 это исправленные выборочные дисперсии, тогда статистика $\frac{\sigma_Y^2 \cdot \bar{S}_X^2}{\sigma_X^2 \cdot \bar{S}_Y^2}$ имеет распределение:
 - 8.1. $F(n_1, n_2)$.
 - 8.2. $F(n_1 1, n_2 + 1)$.
 - 8.3. $F(n_1 + 1, n_2 1)$.
 - 8.4. $F(n_1-1,n_2-1)$.
- 9. Статистика Бартлета применяется для проверки гипотезы:
 - 9.1. о равенстве двух и более дисперсий произвольно распределенных случайных величин;
 - 9.2. о равенстве двух и более дисперсий нормально распределенных случайных величин;
 - 9.3. о равенстве двух и более средних произвольно распределенных случайных величи;.
 - 9.4. о равенстве двух и более средних нормально распределенных случайных величин.
- 10. Вероятность ошибки 1 рода это:
 - 10.1. вероятность не принять гипотезу нулевую гипотезу, когда она верна;
 - 10.2. вероятность принять гипотезу принять нулевую гипотезу, когда она не верна, а верна альтернативная гипотеза;
 - 10.3. вероятность принять гипотезу не принять нулевую гипотезу, когда она не верна, а верна альтернативная гипотеза;
 - 10.4. вероятность принять гипотезу принять альтернативную гипотезу, когда она не верна, а верна нулевая гипотеза;

Эталоны правильных ответов к заданиям в тестовой форме

1	2	3	4	5	6	7	8	9	10
1)	3)	3)	2)	4)	1)	2)	4)	2)	1)

Задания закрытого типа на установление соответствия

Задание № 1

Прочитайте текст и установите соответствие

Соотнесите вид статистики и формулу для её вычисления:

К каждой позиции, данной в левом столбце, подберите соответствующую позицию из правого столбца:

Вид с	татистики	Форму	ула для вычисления
a	Среднее выборки	1	$s = \sqrt{\frac{(x_1 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n}}$
б	Дисперсия выборки	2	$\bar{x} = \frac{x_1 + \dots + x_n}{n}$
В	Среднее квадратичное отклонение выборки	3	$s^{2} = \frac{(x_{1} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n}$

Запишите выбранные цифры под соответствующими буквами

a	б	В
2)	3)	1)

Задание № 2

Прочитайте текст и установите соответствие

Соотнесите вид точечной оценки генерального среднего и формулу для её вычисления:

К каждой позиции, данной в левом столбце, подберите соответствующую позицию из правого столбца:

Вид то	очечной оценки	Формула для вычисления
	Несмещенная и состоятельная точечная оценка генерального среднего	$s^{2} = \frac{(x_{1} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n}$
	Смещенная и состоятельная точечная оценка генеральной дисперсии	$\bar{x} = \frac{x_1 + \dots + x_n}{n}$
	Несмещенная и состоятельная точечная оценка генеральной дисперсии	$s^{2} = \frac{(x_{1} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n - 1}$

Запишите выбранные цифры под соответствующими буквами

a	б	В
2)	1)	3)

Задание № 3

Прочитайте текст и установите соответствие

Соотнесите вид гипотезы и распределение статистики, применяемой для её проверки:

К каждой позиции, данной в левом столбце, подберите соответствующую позицию из правого столбца:

Вид гі	ипотезы	Статистика для проверки гипотезы
a	О равенстве средних двух нормально	1 Распределение Фишера-Снедекора
	распределенных случайных величин	
б	О равенстве дисперсий двух нормально	2 Распределение Стьюдента
	распределенных случайных величин	
В	О равенстве дисперсий двух и более	3 Критерий знаков
	нормально распределенных случайных	
	величин	

Γ	О равенстве распределений двух случайных	4	Распределение Бартлета
	величин		

Запишите выбранные цифры под соответствующими буквами

a	б	В	Г
2)	1)	4)	3)

Задания закрытого типа на установление последовательности

Задание 4

Прочитайте текст и установите последовательность

Установите последовательность действий для проверки гипотезы о равенстве средних двух нормально распределенных случайных величин с равными и неизвестными дисперсиями

1.	По заданному уровню значимости вычислить критическое значение коэффициента Стьюдента
2.	Сравнить критическое и наблюдаемое значения
3.	Сделать вывод о справедливости гипотезы
4.	Вычислить наблюдаемое значение статистики
5.	Рассчитать выборочные средние и дисперсии

Запишите соответствующую последовательность цифр, определяющих порядок их появления слева направо 5) 4) 1) 2) 3)

Залание 5

Прочитайте текст и установите последовательность

Установите последовательность действий при проверки нулевой гипотезы о равенстве средних для применения метода однофакторного анализа

1.	Расчёт наблюдаемого и критического значений
2.	Сделать вывод о равенстве дисперсий
3.	Вычисление факторной суммы и остаточной суммы
4.	Сравнить критическое и наблюдаемое значения
5.	Расчет всех выборочных средних

Запишите соответствующую последовательность цифр, определяющих порядок их появления слева направо 5) 3) 1) 4) 2)

Задания комбинированного типа с выбором верного ответа и обоснованием выбора из предложенных

Задание 7

Прочитайте текст, укажите правильный ответ и запишите аргументы, обосновывающие выбор ответа В ходе проверки действия лекарственного препарата для снижения уровня холестерина проведены 100 испытаний на двух возрастных группах испытуемых. В каждом испытании двум представителям из разных групп давали одинаковые дозы препарата и через некоторое время измерялся уровень холестерина X представителя первой группы, Y представителя второй группы. При уровне значимости $\alpha=0.05$ проверить гипотезу о том, что возраст не влияет на действенность данного препарата. Какой метод проверки гипотезы нужно применить в этом случае

- а) метод проверки гипотезы о равенства двух средних при равных дисперсиях;
- b) метод проверки гипотезы о равенства двух дисперсий;
- с) метод однофакторного анализа;
- d) критерий знаков;

Ответ: с).

Обоснование выбора: В данном случае имеется фактор – это препарат для снижения уровня холестерина, его уровни – это дозы препарата и две возрастные группы испытуемых. Поэтому можно использовать метод однофакторного анализа. Методы (а) и (б) использовать нельзя, т.к. в задаче не исследуются средние и дисперсии. Метод (д) использовать нельзя, поскольку в нем не учитываются уровни фактора.

Справка

о материально-техническом обеспечении рабочей программы дисциплины **Прикладная биостатистика**

No.	Наименование специальных*	Оснащенность специальных помещений и помещений
п\п	помещений и помещений для	для самостоятельной работы
	самостоятельной работы	_
1	Лаборатория по физике и математике №1 (к 402)	Интерактивная доска. Медицинские торсионные весы, электронный осциллографы, аудиотестер, рефрактометр, оптический поляриметр, электрические датчики: фотодатчик, индуктивный, пьезоэлектрический (измеритель давления), терморезисторный (измеритель температуры), радиометр, аппарат для гальванизации и электрофореза «поток», аппараты для дарсонвализации искра» и «элад», аппарат для низкочастотной терапии «тонус», электрокардиограф, электрические измерительные приборы: амперметры, вольтметры, мультиметры, генератор электрических сигналов звуковой частоты.
2	Лаборатория по физике и математике №2 (к 404)	Медицинские торсионные весы, электронный осциллографы, аудиометр, аудиотестер, рефрактометр, оптический поляриметр, электрические датчики: фотодатчик, индуктивный, пьезоэлектрический (измеритель давления), терморезисторный (измеритель температуры), радиометр, аппарат для гальванизации и электрофореза «поток», аппараты для дарсонвализации искра» и «элад», электрокардиографы, электрические измерительные приборы: амперметры, вольтметры, мультиметры, генератор электрических сигналов звуковой частоты.
3	Лаборатория по физике и математике №3(к 405)	Интерактивная доска. Медицинские торсионные весы, электронный осциллографы, аудиотестер, рефрактометр, оптический поляриметр, электрические датчики: фотодатчик, индуктивный, пьезоэлектрический (измеритель давления), терморезисторный (измеритель температуры), радиометр, аппарат для гальванизации и электрофореза «поток», аппараты для дарсонвализации искра» и «элад», электрокардиографы, аппарат «электросон» для низкочастотной терапии, электрические измерительные приборы: амперметры, вольтметры, мультиметры, генератор электрических сигналов звуковой частоты.
4	Компьютерный класс	Персональные компьютеры (25 шт.), интерактивная доска

^{*}Специальные помещения - учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Лист регистрации изменений и дополнений на _____ учебный год в рабочую программу дисциплины (модуля, практики)

(название дисциплины, модуля, практики)				
	,	для обучающихся	курса,	
специальность:				
			(название специально	cmu)
форма обучения: очная/заочная				
Изменения и дополнения в рабочую программу дисциплины рассмотрены на				
заседании кафедры «»				
заседании кафедры «				
Зав. кафедрой (ФИО)				
подпись				
Содержание изменений и дополнений				
№	Раздел, пункт, номер	Старый текст		Комментарий
Π/Π	страницы, абзац			•
1	•			

Использование балльно-рейтинговой системы

Модуль «Основы биостатистики»

- 1. Вводный контроль (3 вопроса) в начале занятия 3 балла.
- 2. Рубежный контроль по модулю «Основы биостатистики».
 - 2.1. Решение 5 задач 15 баллов.
 - 2.2. Компьютерное тестирование по модулю «Статистика» 25 баллов.

Оценка рубежного контроля в тестовой форме:

Менее 72% правильных ответов - 0 баллов, от 72% до 100% - количество баллов равно количеству правильных ответов.

- 3. Работа в аудитории 1 балл.
- 4. Максимальная сумма баллов по модулю -64 балла.
- 5. Студенты, набравшие 45 и более баллов, получают зачет по модулю.

Модуль «Прикладная биостатистика»

- 1. Вводный контроль (до 3-х задач) в начале занятия 3 балла.
- 2. Рубежный контроль по модулю «Прикладная биостатистика»
 - 2.1. Решение 3 задач 9 баллов.
 - 2.2. Компьютерное тестирование по модулю «Статистика» 25 баллов.
 Оценка рубежного контроля в тестовой форме: менее 72% правильных ответов 0 баллов, от 72% до 100% количество баллов равно количеству правильных ответов.
- 3. Работа в аудитории 1 балл.
- 4. Максимальная сумма баллов по модулю 62 балла.
- 5. Студенты, набравшие 43 и более баллов, получают зачет по модулю.

Студенты, получившие зачет по двум модулям, получают зачет по дисциплине.