Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный медицинский университет» Министерства здравоохранения Российской Федерации

Кафедра медицинской биофизики

Рабочая программа дисциплины Физика, математика

для иностранных обучающихся 1 курса, (с использованием английского языка)

специальность 31.05.03 (Стоматология)

форма обучения очная

Трудоёмкость, зачётные единицы/часы	<u>З</u> з.е. / <u>108</u> ч.
в том числе:	
контактная работа	<u>54</u> ч.
самостоятельная работа	<u>54</u> ч.
Промежуточная аттестация, форма/семестр	Зачёт / І семестр

Разработчик: доцент каф. медицинской биофизики ТвГМУ, доцент, кандидат физ.-мат. наук Гусева О.С.

Внешняя рецензия дана заведующий кафедрой общей физики физико-технического факультета ТвГУ, профессором, доктором хим. наук Орловым Ю.Д.

Рабочая программа рассмотрена и одобрена на заседании кафедры «14» апреля 2025 г. (протокол № 5)

Рабочая программа рассмотрена и одобрена на заседании профильного методического совета «24» мая 2025 г. (протокол № 5)

Рабочая программа утверждена на заседании центрального координационнометодического совета (27) августа (2025) г. (протокол № 1)

І. Пояснительная записка

Рабочая программа дисциплины разработана в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по специальности 31.05.03 — Стоматология, утвержденным Приказом Минобрнауки России от 12.08.2020 № 984, с учётом рекомендаций основной профессиональной образовательной программы (ОПОП) высшего образования.

1. Цель и задачи дисциплины

Целью освоения дисциплины является формирование у обучающихся общепрофессиональных и профессиональных компетенций для оказания квалифицированной медицинской помощи в соответствии с федеральным государственным образовательным стандартом.

Задачами освоения дисциплины являются: проведение сбора и медико-статистического анализа информации о показателях здоровья населения различных возрастно-половых групп, характеризующих состояние их здоровья; анализ научной литературы и официальных статистических обзоров, участие в проведении статистического анализа и публичное представление полученных результатов; участие в решении отдельных научно-исследовательских и научноприкладных задач в области здравоохранения по диагностике, лечению, медицинской реабилитации и профилактике.

2. Планируемые результаты обучения по дисциплине

Формируемые	Индикаторы достижения	Планируемые результаты
компетенции	компетенций	обучения
ОПК-10. Спо-	ИОПК 10.1 Знает основные	Знать:
собен понимать	принципы работы с совре-	• основные понятия теории вероятностей
принципы ра-	менными информационны-	и математической статистики;
боты совре-	ми технологиями; справоч-	•Уметь:
менных ин-	но-информационными си-	• применять компьютеры для исследова-
формационных	стемами и профессиональ-	ния физических процессов с использованием
технологий и	ными базами данных с уче-	моделей.
использовать	том требований информаци-	
их для решения	онной безопасности.	

задач профессиональной деятельности

ИОПК 10.2 Умеет: применять современные информационно-коммуникационные технологии для решения задач профессиональной деятельности; осуществлять эффективный поиск информации, необходимой для решения задач профессиональной деятельности.

Знать:

- основные физико-механические свойства материалов;
- характеристики физических факторов (лечебных, климатических, производственных), оказывающих воздействие на организм, биофизические механизмы такого воздействия
- назначение и основы устройства физиотерапевтической и диагностической аппаратуры.

Уметь:

- определять точечные и интервальные оценки параметров генеральной совокупности по выборке
- производить основные физические измерения, обрабатывать результаты измерений и использовать для этого вычислительные средства;
- работать на медицинской аппаратуре, представленной в лабораторном практикуме.

ИОПК 10.3 Умеет осуществлять поиск и отбор научной, нормативно-правовой документации с использованием современных информационных технологий с учетом основных требований информационной безопасности.

Знать:

• технику безопасности при работе с аппаратурой и основные вопросы охраны труда.

Уметь:

- решать медико-биологические задачи с применением вероятностных методов,
- определять точечные и интервальные оценки параметров генеральной совокупности по выборке
- применять компьютеры для исследования физических процессов с использованием моделей.
- проводить лабораторные и инструментальные обследования

3. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина «Физика, математика» входит в обязательную часть Блока 1 ОПОП специалитета «Стоматология».

Уровень начальной подготовки обучающегося для успешного освоения дисциплины основывается на программе средней школы по информатике и математике.

Освоение дисциплины «Физика, математика» необходимо как предшествующее для следующих дисциплин:

- 1) Нормальная физиология физиология челюстно-лицевой области
- 2) Общественное здоровье и здравоохранение, экономика здравоохранения
- **4. Объём дисциплины** составляет 3 зачетных единицы, 108 академических часа, в том числе 54 часа, выделенных на контактную работу обучающихся с преподавателем и 54 часа самостоятельной работы обучающихся.

5. Образовательные технологии

В процессе освоения дисциплины используются следующие образовательные технологии, способы и методы формирования компетенций: лекция-визуализация, традиционная лекция, практические занятия с решением задач, лабораторные работы, работа с математической компьютерной программой, участие в научно-практических конференциях, учебно-исследовательская работа студентов, подготовка и защита рефератов, использование компьютерных математических моделей.

Элементы, входящие в самостоятельную работу студента: подготовка к семинарским и практическим занятиям, написание рефератов, работа с Интернет-ресурсами, работа с компьютерными кафедральными программами, самостоятельное освоение разделов — «Активный и пассивный транспорт», «Магнитное поле», «Тепловое излучение тел» «Квантовая оптика».

6. Формы промежуточной аттестации

<u>Промежуточная аттестация</u> – в I семестре проводится зачёт с использованием балльнонакопительной системы.

- П. Учебная программа дисциплины
- 1. Содержание дисциплины

МОДУЛЬ 1. Математика

ТЕМА 1. Теория вероятностей

Элементы теории вероятностей. Случайное событие. Вероятность случайного события. Отношения между событиями. Алгебра событий. Вероятность суммы и произведения событий. Случайные величины. Распределение дискретных и непрерывных случайных величин, и их характеристики. Нормальный закон распределения. Системы случайных величин

ТЕМА 2. Элементы математической статистики

Математическая статистика. Задачи математической статистики. Генеральная и выборочная совокупности. Репрезентативность выборки. Статистическое распределение выборки, дискретные и интервальные вариационные ряды. Полигон. Гистограмма. Оценки характеристик распределения по данным выборки. Точечные оценки параметров распределения. Генеральная средняя и выборочная средняя. Генеральная дисперсия

Доверительный интервал и доверительная вероятность. Нахождение границ доверительного интервала для оценки математического ожидания нормально распределенной случайной величины по данным выборки малого объема. Распределение Стъюдента.

ТЕМА 3. Корреляционный и регрессионный анализ.

Функциональная корреляционная зависимости. Коэффициент линейной корреляции и его свойства. Уравнение линейной регрессии.

МОДУЛЬ 2. ФИЗИКА

ТЕМА 4. Механика. Акустика

4.1. Течение и свойства жилкостей.

Вязкость жидкости. Течение вязкой жидкости по трубам. Методы определения вязкости жидкостей. Виды течения жидкостей. Поверхностное натяжение жидкости. Капиллярные явления.

4.2. Колебания.

Виды колебаний: свободные (затухающие и незатухающие), вынужденные и автоколебания. Уравнения колебаний. Сложное колебание и его гармонический спектр. Механические волны. Эффект Доплера. Ударные волны.

4.3. Звук. Ультразвук. Инфразвук.

Физические характеристики звука и их связь с характеристиками слухового ощущения, аудиометрия, звуковые методы исследования, применяемые в клинике. Воздействие ультразвука на биологические ткани и особенности его распространения в них; ультразвуковые методы исследования. Инфразвук и его действие на человека.

ТЕМА 5. Процессы переноса в биологических системах. Гемодинамика

Основные закономерности течения вязких жидкостей применительно к основным компонентам крови. Физические основы клинического метода измерения давления крови (Короткова). Приборы для измерения давления крови и скорости кровотока.

TEMA 6. Биоэлектрогенез. Электрические и магнитные свойства тканей и окружающей среды. Электромагнитные колебания и волны

6.1. Активный и пассивный транспорт.

Разновидности пассивного переноса молекул и ионов через мембраны. Активный транспорт.

6.2. Биоэлектрические потенциалы.

Представление об эквивалентном электрическом генераторе органов и тканей. Физические основы электрографии тканей и органов.

6.3. Электропроводимость биологических тканей.

Электропроводимость биологических тканей и жидкостей для постоянного тока. Переменный ток. Импеданс тканей организма.

6.4.Высокочастотные электрические поля и токи.

Физические процессы, происходящие в тканях организма под воздействием высокочастотного тока (дарсонвализация и электрохирургия), переменного магнитного поля высокой и ультравысокой частоты (индуктотермия), электрического поля ультравысокой частоты (УВЧ-терапия), электромагнитных волн сверхвысокочастотного (микроволновая терапия и ДЦВ-терапия) и крайневысокочастотного диапазонов (КВЧ-терапия).

6.5. Магнитное поле.

Магнитные свойства вещества. Магнитодиагностика. Понятие о магнитобиологии и биомагнетизме.

ТЕМА 7. Медицинская аппаратура

Физические основы диагностических методов исследования.

Реография, ЭКГ. Физические основы применения физиотерапевтических аппаратов «Тонус», «Амплипульс», «Искра», «Электросон», «Поток» и т.д. Классификация медицинской техники, способы обеспечения безопасности и надёжности медицинской аппаратуры.

ТЕМА 8. Оптика. Физика атомов и молекул

8.1.Элементы геометрической оптики.

Интерференция света. Дифракция. Понятие о голографии. Поляризация света. Специальные приёмы микроскопии.

8.2.Тепловое излучение тел.

Инфракрасное и ультрафиолетовое излучения и их применение в медицине.

8.3. Квантовая оптика.

Рассеяние, поглощение света. Люминесценция. Основные свойства лазерного излучения. Применение лазеров.

ТЕМА 9. Ионизирующее излучение. Дозиметрия

Виды ионизирующего излучения. Рентгеновское излучение. Радиоактивный распад. Взаимодействие ионизирующего излучения с веществом. Детекторы ионизирующего излучения. Биофизические основы действия ионизирующих излучений на организм. Физические основы применения ионизирующих излучений в медицине. Дозиметрия ионизирующего излучения.

2. Учебно-тематический план дисциплины (в академических часах) и матрица компетенций*

		онтактн чающих дават	ся с пр гелем		Всего	Само-		Формируемые компетенции	Используемые об-	- Формы те- кущего и ру- бежного кон- троля успе- ваемости
Коды (номера) модулей (разделов) дисциплины и тем	лекции	лабораторные практикумы	практические за- нятия,	экзамен/зачет	часов на ауди- торную работу	стоя- тельная работа студен- та	Итого часов	ОПК-10	разовательные технологии, спо- собы и методы обучения	
І. Модуль Математика										
1.			8		8	4	12	X	Л, Б	Пр
2			8		8	4	12	X	Л	Пр
3			9		9	3	12	X	Л, КММ	Пр, КР
II. Модуль Физика										
4.						2	2			
4.1		3			3	2	5	X	Л, ЛВ, УФ, УИРС	Пр, Т, С, ЗС
4.2.						1	1	X	Л, ЛВ, УФ, УИРС	Пр, Т, С
4.3		3			3	2	5	X	Л, ЛВ, УФ, УИРС	Пр, Т, С
5		3			3	4	7	X	УИРС	Пр, Т, С, 3С
6.						2	2	X		
6.1						1	1	X	УИРС	Р, Д
6.2		3			3	2	5	X	УИРС	Р, Д
6.3		3			3	2	5	X	Л, ЛВ, УФ, УИРС	Пр, Т, С, 3С
6.4		3			3	2	5	X	Л, ЛВ, УФ, УИРС	Пр, Т, С, 3С
6.5						2	2	X	УИРС	Р, Д
7.		3			3	3	6	X	Л, ЛВ, УФ, УИРС, НПК	Пр, Т, С, 3С НПК
8						1	1	X		

8.1.	3			3	2	5	X	УИРС	Пр, Т, С
8.2					1	1	X	УИРС	Р, Д
8.3.					1	1	X	УИРС	Р, Д
9.	3			3	3	6	X	Л, ЛВ, УФ, УИРС	Пр, Т, С
10.				2	2	4	X	Л,УИРС,НПК	Т,Р,Д
Зачёт			2	2	6	8			
итого:	27	25	2	54	54	108			

Список сокращений: традиционная лекция (Л), лекция-визуализация (ЛВ), учебно-исследовательская работа студента (УИРС), участие в научно-практических конференциях (НПК), УФ – учебный видеофильм.

Примерные формы текущего, в т.ч. рубежного контроля успеваемости (с сокращениями): T – тестирование, Πp – оценка освоения практических навыков (умений), 3C – решение ситуационных задач, KP – контрольная работа, K3 – контрольное задание, P – написание и защита реферата, C – собеседование по контрольным вопросам, \mathcal{A} – подготовка доклада и др. **Примерные формы текущего, в т.ч. рубежного контроля успеваемости** (с сокращениями): T – тестирование, Πp – оценка освоения практических навыков (умений), 3C – решение ситуационных задач, KP – контрольная работа, K3 – контрольное задание, ME – написание и защита истории болезни, E – написание и защита кураторского листа, E – написание и защита реферата, E – собеседование по контрольным вопросам, E – подготовка доклада и др.

Ш. Фонд оценочных средств для контроля уровня сформированности компетенций (Приложение № 1)

1. Оценочные средства для текущего, в т.ч. рубежного контроля успеваемости

Оценка уровня сформированности компетенций осуществляется в процессе следующих форм контроля:

• Текущего - проводится оценка выполнения студентами заданий в ходе аудиторных занятий в виде решения типовых и ситуационных задач, оценки овладения практическими умениями, собеседования по контрольным вопросам.

• Рубежного:

- Модуль «Математика» заканчивается программным тестовым контролем на компьютере и рубежным контролем в виде типовых и ситуационных задач.
- Модуль «Физика» заканчивается программным тестовым контролем на компьютере.

Оценивается самостоятельная работа студентов: подготовленный тематический реферат или доклад по пройденной теме.

• Итогового:

Зачёт проводится в конце II семестра и включает в себя контроль теоретических знаний путём решения заданий в тестовой форме, решения ситуационных задач по теории вероятности, математической статистике и физике, проверку практических навыков работы с двумя приборами из лабораторного практикума (см. Приложение 5. Бально-накопительная система оценивания).

1. Оценочные средства для текущего и рубежного контроля успеваемости по модулю «Математика»

Примеры ситуационных задач к практическим занятиям по темам 1-3

- Кубик бросают два раза. Построить закон распределения для суммы очков. Найти математическое ожидание, дисперсию, среднеквадратическое отклонение.
- Дана выборка: 7, 6, 6, 2, 4, 5, 5, 3, 2, 4, 5, 6, 5, 4, 2, 3, 3. Построить статистический дискретный ряд, полигон относительных частот; найти выборочное среднее и выборочное среднеквадратическое отклонение.
- 3) У собак короткая шерсть доминирует над длинной. Получен помёт в 3 щенка от короткошерстных самца и самки (гетерозиготных по признаку). Построить ряд распределения для числа длинношерстных щенков в помёте. Найти математическое ожидание числа длинношерстных щенков в помёте.

Примеры заданий закрытого типа к рубежному контролю по модулю «Математика»

- 1. Какая формула классического определения вероятности случайного события А (побщее число исходов, тисло благоприятных исходов для события А).

1)
$$P(A) = \frac{n}{m}$$

2) $P(A) = \lim_{n \to \infty} \frac{m}{n}$

3)
$$P(A) = \frac{m}{n}$$

4)
$$P(A) = \lim_{n \to 0} \frac{m}{n}$$

- 2. Какие события называют совместными
 - 1) наступление одного из событий в одном опыте не исключает появление другого
 - 2) наступление одного из них в одном опыте обязательно сопровождается наступле-
 - 3) в условиях опыта произойдут только эти события и никакие другие
 - 4) если события не могут произойти одновременно в условиях данного опыта
- 3. Какие события называют единственно возможными
 - 1) если в условиях данного опыта произойдут только эти события и никакие другие
 - 2) если наступление одного из событий в одном опыте исключает появление другого
 - 3) если события не могут произойти одновременно в условиях данного опыта
 - 4) наступление одного из событий в одном опыте не исключает появление другого
- 4. Чему равна статистическая вероятность события (п-общее число исходов, m-число исходов для события А)

1)
$$P(A) = \frac{n}{m}$$

$$2) \quad P(A) = \lim_{n \to \infty} \frac{m}{n}$$

3)
$$P(A) = \frac{m}{n}$$

3)
$$P(A) = \frac{m}{n}$$
4)
$$P(A) = \lim_{n \to 0} \frac{m}{n}$$

- При каких условиях событие С является Суммой двух событий А и В
 - 1) в появлении либо события А, либо события В
 - 2) в одновременном появлении событий А и В
 - 3) в исключении события А и события В
 - 4) в непоявлении события А и появлении события В
- 6. При каких условиях событие С является Произведением двух событий А и В
 - 1) в исключении события А и события В
 - 2) в появлении либо события А, либо события В
 - 3) в одновременном появлении событий А и В
 - 4) в непоявлении события А и появлении события В
- 7. Чему равна вероятность суммы двух совместимых событий
 - 1) P(A или B) = P(A) + P(B) P(A и B)
 - 2) P(A или B) = P(A) + P(B) + P(A и B)
 - 3) P(A или B) = P(A) + P(B)
 - 4) P(A или B) = P(A) + P(B) * P(B/A)
- 8. Чему равна вероятность суммы двух несовместимых событий
 - 1) P(A или B) = P(A) + P(B) P(A) * P(B)
 - 2) P(A или B) = P(A) + P(B) + P(A) * P(B)
 - 3) P(A или B) = P(A) + P(B)
 - 4) P(A или B) = P(A) + P(B) * P(B/A)
- 9. Чему равна вероятность произведения двух независимых событий
 - 1) $P(A \cup B) = P(A) * P(B)$

- 2) P(AuB) = P(A) + P(B) * P(B/A)
- 3) $P(A \cup B) = P(A) * P(B) * P(B/A)$
- 4) P(AuB) = P(A)*P(B)-P(AB)
- 10. Чему равна вероятность произведения двух зависимых событий
 - 1) $P(A \cup B) = P(A) * P(B)$
 - 2) P(A u B) = P(A) * P(B/A)
 - 3) P(AuB) = P(A)*P(B)*P(B/A)
 - 4) P(AuB) = P(A)*P(B)-P(AB)
- 11. Что характеризует дисперсия
 - 1) наименьшее значение случайной величины
 - 2) среднее значение случайной величины
 - 3) степень рассеяния случайной величины относительно её математического ожидания
 - 4) степень рассеяния случайной величины относительно её моды
- 12. По какой формуле рассчитывается дисперсия дискретной случайной величины

1)
$$D(x) = \int_{-\infty}^{\infty} x f(x) dx$$

2)
$$D(x) = \int_{-\infty}^{\infty} [x - M(x)]^2 f(x) dx$$

3)
$$D(x) = \sum_{i=1}^{n} [x_i - M(x)]^2 P_i$$

$$4) \quad D(x) = \sum_{i=1}^{n} x_i \cdot P_i$$

13. По какой формуле рассчитывается дисперсия непрерывной случайной величины

1)
$$D(x) = \int_{-\infty}^{\infty} xf(x)dx$$

2)
$$D(x) = \int_{-\infty}^{\infty} [x - M(x)]^{2} f(x) dx$$

3)
$$D(x) = \sum_{i=1}^{n} [x_i - M(x)]^2 P_i$$

$$4) \quad D(x) = \sum_{i=1}^{n} x_i \cdot P_i$$

- 14. Какому распределению не подчиняется дискретная случайная величина
 - 1) распределению Пуассона
 - 2) нормальному распределению
 - 3) биноминальному распределению
 - 4) распределению Бернулли
- 15. Что характеризует математическое ожидание случайной величины
 - 1) сумма произведений всех возможных значений случайной величины на соответствующие им вероятности
 - 2) корень квадратный из дисперсии
 - 3) совокупность всех значений этой величины с соответствующими вероятностями
 - 4) сумма квадрата произведений всех возможных значений случайной величины на соответствующие им вероятности

Эталоны правильных ответов к заданиям в тестовой форме

1	2	3	4	5	6	7	8	9	10
3)	1)	1)	2)	1)	2)	1)	3)	1)	3)
11	12	13	14	15					
3)	3)	2)	2)	1)					

Критерии оценки рубежного тестового контроля знаний по окончании модуля «математика»:

Студентом даны правильные ответы на задания в тестовой форме (25 тестовых заданий). Оценка рубежного контроля в тестовой форме

Менее 70% правильных ответов - 0 баллов

От 72 до 100% правильных ответов — число баллов равно числу правильных ответов

72	74	76	78	80
22	23	24	25	26
82	84	86	88	90
27	28	29	30	31
92	94	96	98	100
32	33	34	35	36

Примеры ситуационных задач к рубежному контролю по модулю «Математика»

- 1) Отец правша (Aa) со II (A0) группой крови, мать правша (Aa) с III (B0) группой. У них 4 детей. Построить закон распределения среди детей числа правшей с IV группой крови. Найти M, D, σ.
- 2) Генотип отца AaBbCcDd, генотип матери AabbCcDd.У них 3 детей. Построить закон распределения для числа детей с генотипом отца. Найти M, D, σ.
- 3) Определите доверительный интервал для генеральной средней роста призывников с доверительной вероятностью 0,95 по результатам следующей выборки: 168, 174, 185, 162, 168, 179, 185, 195, 192, 174, 182, 163, 175, 185, 160, 172.
- 4) В течение дня в родильном доме зафиксировали следующие значения роста новорождённых девочек (см): 50, 52, 53, 52, 54, 52, 55, 56, 51, 55. Определите доверительный интервал для генеральной средней с доверительной вероятностью 0,95.
- 5) Построить гистограмму плотности относительной частоты для веса новорождённых, разбив весь диапазон значений на 5 интервалов. Вес : 3.4, 3.3, 3.5, 3.1, 3.7, 2.9, 3.7, 3.6, 3.6, 3.4, 3.5, 3.1, 3.0, 3.4, 3.6, 3.9, 3.8, 3.3, 3.5, 3.4, 3.6, 3.3, 3.2, 3.1, 3.2.Оценить генеральную среднюю и генеральную дисперсию по данной выборке.

Критерии оценки при решении итоговых ситуационных задач

- **0 баллов -** студент неправильно, решает задачу, допуская грубые арифметические ошибки; не описан ход решения задачи.
- **1 балл** студент решает задачу, допуская значительные арифметические ошибки; не описан ход решения задачи.
- **2 балла** студент правильно, аккуратно и оперативно решает задачу, допуская значительные арифметические ошибки; описан ход решения задачи.
- **3 балла** студент правильно, аккуратно и оперативно решает задачу, не допуская ошибок; или допуская незначительные арифметические ошибки; описан ход решения задачи.

2. Оценочные средства для текущего и рубежного контроля успеваемости по модулю «Физика»

Примеры заданий по практической работе по темам №4-№10.

Лабораторная работа № 7

ЛЕЧЕБНЫЙ ЭЛЕКТРОФОРЕЗ И ГАЛЬВАНИЗАЦИЯ

- <u>ЦЕЛЬ РАБОТЫ</u>: 1. Изучить применение постоянного электрического тока с лечебной целью.
 - 2. Экспериментально определить величину подвижности ионов.
 - 3. Изучить устройство аппарата для гальванизации и электрофореза.
- ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: аппарат для гальванизации и электрофореза, вольтметр, установка для определения подвижности ионов, состоящая из столика и двух стаканов с электролитом, помещенных на подставке, раствор *КМпО*₄, фильтровальная бумага, предметное стекло, пипетка, провода, электроды.

ЗАДАНИЕ ПО РАБОТЕ

- 1. Экспериментальное определение величины подвижности ионов.
- 2. Знакомство с работой аппарата для гальванизации и электрофореза.

Вопросы для собеседования

- 1) Какие процессы происходят в биологических тканях при пропускании постоянного тока?
 - 2) Что происходит в тканях организма при лечебном электрофорезе?
- 3) Какие функции выполняет аппарат для гальванизации при проведении лечебной процедуры?
 - 4) Что такое сила тока, плотность тока?
 - 5) Что такое подвижность иона и от чего она зависит?
 - 6) Что такое гальванизация?
 - 7) Что такое электрофорез?
- 8) Можно ли для лечебного электрофореза пропускать через пациента переменный ток? Почему?
- 9) Почему при гальванизации под электроды подкладывают прокладки, смоченные изотоническим раствором?
 - 10) Что такое изотонический раствор?
 - 11) Куда помещают лекарственные вещества при лечебном электрофорезе?
- 12) Какого характера ожог кожи наблюдается при гальванизации, если под электроды не поместить прокладки, смоченные изотоническим раствором?
- 13) Из-под электродов какого знака вводятся ионы металлов при лечебном электрофорезе? Из-под электродов какого знака вводятся кислотные радикалы и другие отрицательные ионы при лечебном электрофорезе?
 - 14) От чего зависит время проведения процедуры лечебного электрофореза?
 - 15) От чего зависит скорость иона при его движении в тканях?

Примеры ситуационных задач по практической работе по темам №4-№9.

- 1) Подвижность ионов кальция в водном растворе равна $6.2*10^{-8}$ $\frac{M^2}{B \cdot c}$. Определить скорость установившегося движения ионов в поле напряженностью 300 В/м.
- 2) Глубина проникновения ионов кальция в биоткани при процедуре злектрофореза, длившейся 10 мин, оказалась равной 1,2 см. Найти скорость ионов.
- 3) Определить подвижность ионов по результатам проведенных опытов, если напряжение между электродами, расположенными на расстоянии 12 см, равно 36 В, а ионы переместились на 1см за 20 минут?
- 4) Подвижность ионов натрия в водном растворе при 25°C равна $5.2*10^{-8}$ $\frac{M^2}{B\cdot c}$, а ионов хлора выше в 1,5 раза. Найти подвижность ионов хлора.

Эталоны ответов.

- 1) 0.02 mm/c.
- 0,02 MM/c
- 3) $2.8*10^{-8} \frac{M^2}{B \cdot c}$
- 4) $7.8*10^{-8} \frac{M^2}{B \cdot c}$

Критерии оценки теоретической части работы

- 1. Знать основные физические законы, описывающие изучаемое явление, и соответствующие им формулы.
- 2. Знать обозначения и смысл физических величин, входящих в формулы, и их единицы размерностей.
- 3. Объяснить закономерности изучаемых медико-биологических процессов с точки зрения физики.
- 5 баллов выполнены все требования;
- **4 балл** допущены незначительные ошибки в ответах, не искажающих сути изучаемого явления;
 - 3 балла полностью не выполнено часть одного из требований;
 - 2 балла полностью не выполнено одно требование;
- **1 балл** полностью не выполнено одно требование, допускаются незначительные ошибки по другим критериям;
- 0 баллов не выполнено два и более требования, даны ответы, имеющие резкое расхождение с физической теорией.

Критерии оценки выполнения практической части работы

- 1. Представить готовый конспект работы.
- 2. Объяснить результаты измерений и расчетов, рассказать, как они получены.
- 3. Показать знания и умения работы с приборами.
- 5 баллов выполнены все требования;
- **4 балл** допущены незначительные ошибки в оформлении работы или проведении расчётов, которые корректируются в течение недели;

- **3 балла** допущены незначительные ошибки в оформлении работы или проведении расчётов, которые корректируются в течение более одной недели;
- **2 балла** допущены значительные ошибки в оформлении работы или проведении расчётов, дающие отклонения измеряемой величины от истинного значения не более, чем на порядок;
- **1 балл** не выполнено одно требование, допущены значительные ошибки в оформлении работы или проведении расчётов, дающие отклонения измеряемой величины от истинного значения более, чем на порядок;
- **0 баллов** не выполнено два и более требования, предъявлены результаты измерений и расчётов, не полученные самостоятельно.

Примеры заданий закрытого типа к темам №4-№10.

Задания закрытого типа для рубежного контроля уровня знаний по модулю «Физика»

Укажите правильный вариант ответа:

- 1. Что происходит с частицами воздуха при распространении в нем звуковой волны
 - 1) колеблются перпендикулярно направлению распространения
 - 2) совершают колебания вдоль направления распространения волны
 - 3) движутся прямолинейно и равноускоренно по направлению волны
 - 4) движутся по синусоидальной траектории
- 2. Как распространяется звук
 - 1) в твердых, жидких, газообразных средах
 - 2) в твердых и жидких средах, в газах и вакууме
 - 3) в воздухе и вакууме
 - 4) только в твердых телах и газах
- 3. Каким расстоянием является длина механической волны
 - 1) между двумя ближайшими частицами, колеблющимися одинаково
 - 2) между двумя любыми частицами, колеблющимися одинаково
 - 3) проходимое частицей за один период колебания
 - 4) между двумя ближайшими частицами, колеблющимися в противофазе
- 4. Какая норма порога слышимости на частоте 1 кГц
 - 1) 0 BT/m^2
 - 2) 10^{-12} BT/cm^2
 - 3) 10^{-12} BT/m^2
 - 4) 10 BT/m^2
- 5. От чего зависит значение порога слышимости
 - 1) физиологических особенностей человека и интенсивности звука
 - 2) частоты и интенсивности звука
 - 3) амплитуды звуковой волны
 - 4) физиологических особенностей человека и частоты звука
- 6. Что изменится при переходе звука из воздуха в воду
 - 1) частота колебаний
 - 2) период колебаний
 - 3) фаза колебаний
 - 4) длина волны

- 7. Что произойдет при увеличении интенсивности звука в 100 раз
 1) увеличится на 2 Белла
 2) увеличится в два раза
 3) увеличится в 10 раз
 4) увеличится в 100 раз
- 8. Что переносит механическая волна
 - 1) вещество
 - 2) массу
 - 3) скорость
 - 4) энергию
- 9. Чему равен порог болевого ощущения (на частоте 1кГц)
 - 1) 10 BT/cm^2
 - 2) 10^{-12} BT/m^2
 - 3) 13 Б
 - 4) 100 дБ
- 10. Что представляет звуковая волна, распространяющаяся в воздухе
 - 1) механические поперечные волны с частотами от 16 до 20000 Γ ц
 - 2) механические продольные волны с частотами от 16 до 20000 Гц
 - 3) электромагнитные волны с частотами от 16 до 20000 Гц
 - 4) продольные волны с частотами от 16 до 20000 Гц

Эталоны правильных ответов к заданиям в тестовой форме.

- 1. 2)
- 2. 1)
- 3. 1)
- 4. 3)
- 5. 4)
- 6. 4)
- 7. 1)
- 8. 4)
- 9. 3)
- 10. 2)
- 11. a)

Критерии оценки рубежного тестового контроля знаний по окончании модуля «физика»:

Студентом даны правильные ответы на задания в тестовой форме (50 тестовых заданий):

Оценка рубежного контроля в тестовой форме

Менее 70% правильных ответов (менее 35)- 0 баллов

Более 70% правильных ответов (от 35 до 50) – число баллов равно числу правильных ответов.

Перечень практических навыков (умений), которые необходимо освоить студенту

Умение	Критерий оценки
Умение ОПК-10. Способен решать стандартные задачи профессиональной деятельности с использованием информационных, библиографических ресурсов, медико- биологической терминологии, информационнокоммуникационных технологий с учетом основных требований информационной безопасности	Зачтено - студент отвечает на теоретические вопросы, правильно или с небольшими огрехами выполняет работу, решает ситуационные задачи, демонстрирует логические способности обоснования решения. Не зачтено — студент не владеет теоретическим материалом и делает грубые ошибки при выполнении методики практических работ, не может сделать логического
	заключения, не справляется с тестами или ситуационными задачами.

2. Оценочные средства для промежуточной аттестации по итогам освоения дисциплины (зачёт)

Критерии балльно-рейтинговой системы оценки знаний студентов представлены в Приложении №5

Студенты, не набравшие необходимого числа баллов по балльно-рейтинговой системе, сдают зачёт следующим порядком.

Критерии оценки по итогам промежуточной аттестации (зачёт)

Зачет по модулю является 3-х этапным.

1 этап – компьютерное тестирование по математике и по физике. При получении 70% (53 правильных ответа) и более правильных ответов из общего числа вопросов обоих тестов (математика, физика) студент получает 1 балл и допускается ко второму этапу зачета (по билетам). Если набрано меньше 70%, выставляется «незачтено».

2 этап – решение 3-х ситуационных задач: одна задача - по теории вероятности, одна задача – по математической статистике, одна задача - по медицинской физике. За каждую решенную задачу начисляется 1 балл.

3 этап — проверка практических навыков работы с двумя приборами из лабораторного практикума. За знание каждого прибора начисляется 1 балл.

Для получения зачета необходимо набрать 4 балла, при этом не менее 1 балла на каждом этапе.

Содержание и уровень сложности зачетных задач по математике и физике соответствуют содержанию и уровню сложности задач, решаемых на занятиях по математике и при выполнении работ лабораторного практикума.

Задача считается решенной, если получен правильный ответ и приведено решение, из которого этот ответ следует.

Для успешной сдачи практических навыков по прибору (аппарату) необходимо:

- рассказать о назначении прибора и его применении, сказать, какие величины он измеряет;
- рассказать порядок работы с прибором, указав назначение его клавиш, ручек, регулировок, измерительных шкал, подключении и установке;
- продемонстрировать умение работы с прибором, произведя измерение.

Список приборов (аппаратов) на зачете:

- 1. Штангенциркуль
- 2. Аудиометр
- 3. Аудиотестер
- 4. Рефрактометр
- 5. Торсионные весы
- 6. Аппарат для гальванизации и электрофореза.

Фонды оценочных средств для проверки уровня сформированности компетенций по итогам освоения дисциплины для каждой формируемой компетенции создается в соответствии с образцом, приведенным в Приложении № 1.

IV. Учебно-методическое и информационное обеспечение дисциплины

1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины:

а). Основная литература:

- 1. Медицинская информатика : учебник / Т. В. Зарубина [и др.] ; под общ. ред. Т. В. Зарубиной, Б. А. Кобринского. Москва : ГЭОТАР-Медиа, 2018 512 с. : ил. ISBN 978-5-9704-4573-0. Текст : непосредственный
- 2. Антонов, В. Ф. Физика и биофизика : учебник / В. Ф. Антонов, Е. К. Козлова, А. М. Черныш 2-е изд. , испр. и доп. Москва : ГЭОТАР-Медиа, 2014. 472 с. ISBN 978-5-9704-2788-0.

б). Дополнительная литература:

- 1. Федорова, В. Н. Физика: учебник / Федорова В. Н., Фаустов Е. В. Москва: ГЭОТАР-Медиа, 2011. - 384 с. - ISBN 978-5-9704-1983-0. - Текст: непосредственный
- 2. Основы высшей математики и математической статистики : учебник для вузов : 2-е изд., испр. / , И. В. Павлушков, Л. В. Розовский, А. Е. Капульцевич . М. : ГЭОТАР-Медиа, 2007 . 423 с.
- 3. Демидова А.А., Омельченко В.П. Математика: Компьютерные технологии в медицине. М. Феникс, 2008, 588 с.
- 4. Омельченко, Виталий Петрович Математика : компьютерные технологии в медицине : учебник / Виталий Петрович Омельченко, Александра Александровна Демидова . Ростов н/Д : Феникс, 2008 . 588 с.
- 5. Антонов, Валерий Федорович Физика и биофизика для студентов медицинских вузов : учебник / Валерий Федорович Антонов, Елена Карловна Козлова, Александр Михайлович Черныш . М. : ГЭОТАР-Медиа, 2010 . 477 с.
- 6. Павлушков И.В. Основы высшей математики и статистики. М. Гэотар, 2008, 424 с.
- 7. Баврин И.И. Краткий курс высшей математики для химико-биологических и медицинских специальностей М.: Академия, 2010. 616 с

2. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- 1. Физика, математика, Модуль «Математика», Методические указания к выполнению лабораторного практикума для студентов, обучающихся по специальностям «Стоматология» / Туровцев В.В., Богданов Ю.В., Бахтилов В.И., Корпусов О.М., Залетов А.Б., Гординская Е.Н., Крючкова Е.В.
- 2. Физика, математика, Модуль «Физика», Методические указания к выполнению лабораторного практикума для студентов, обучающихся по специальностям «Стоматология» / Туровцев В.В., Богданов Ю.В., Бахтилов В.И., Корпусов О.М., Залетов А.Б., Гординская Е.Н., Крючкова Е.В.

3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Профессиональные базы данных, информационные справочные системы и электронные образовательные ресурсы:

Клинические рекомендации: http://cr.rosminzdrav.ru/;

Электронный справочник «Информио» для высших учебных заведений (www.informuo.ru);

Университетская библиотека on-line (www.biblioclub.ru);

Информационно-поисковая база Medline (http://www.ncbi.nlm.nin.gov/pubmed); База данных POLPRED (www.polpred.com);

Электронный библиотечный абонемент Центральной научной медицинской библиотеки Первого Московского государственного медицинского университета им. И.М. Сеченова // http://www.emll.ru/newlib/;

Бесплатная электронная библиотека онлайн «Единое окно доступа к образовательным ресурсам» // http://window.edu.ru/;

Официальный сайт Министерства здравоохранения Российской Федерации // https://minzdrav.gov.ru/;

Российское образование. Федеральный образовательный портал. //http://www.edu.ru/;

4. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

4.1. Перечень лицензионного программного обеспечения:

- 1. Microsoft Office 2016:
- Access 2016;
- Excel 2016;
- Outlook 2016;
- PowerPoint 2016;
- Word 2016;
- Publisher 2016;
- OneNote 2016.
- 2. Программное обеспечение для тестирования обучающихся SUNRAV TestOffice-Pro
 - 3. Система дистанционного обучения Moodle
 - 4. Платформа Microsoft Teams

4.2. Перечень электронно-библиотечных систем (ЭБС):

- 1. www.studmedlib.ru Консультант студента. Электронная библиотека;
- 2. Консультант врача. Электронная медицинская библиотека [Электронный ресурс]. Москва: ГЭОТАР-Медиа. Режим доступа: www.geotar.ru;
 - 3. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)

Методические указания для обучающихся по освоению дисциплины. Приложение № 4

V. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Приложение № 2

VI. Научно-исследовательская работа студента

Научно-исследовательская работа студентов представлена: реферативной работой; проведением научных исследований с последующим выступлением на итоговых научных студенческих конференциях в Твери и в других городах России; публикацией в сборниках студенческих работ; кафедральных изданиях и Верхневолжском медицинском журнале.

Фонды оценочных средств

для проверки уровня сформированности компетенций (части компетенций) для промежуточной аттестации по итогам освоения дисциплины Физика, математика

- Физика, математика Роторки (специали пості) 31 05 03 Стома

направление подготовки (специальность) 31.05.03 Стоматология форма обучения – очная

Общепрофессиональная компетенция (ОПК)-10 (. Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности)

1) Типовые задания для оценивания результатов сформированности компетенции на уровне ИОПК 10.1 (Знает принципы работы современных информационных технологий.):

Задания комбинированного типа с выбором верного ответа

- 1. По какой формуле рассчитывается математическое ожидание дискретной случайной величины
 - 1) $M(x) = \int_{-\infty}^{\infty} x f(x) dx$

2)
$$M(x) = \int_{-\infty}^{\infty} [x - D(x)]^2 f(x) dx$$

3)
$$M(x) = \sum_{i=1}^{n} [x_i - D(x)]^2 P_i$$

$$4) \quad M(x) = \sum_{i=1}^{n} x_i \cdot P_i$$

2. По какой формуле рассчитывается математическое ожидание непрерывной случайной

1)
$$M(x) = \int_{-\infty}^{\infty} x f(x) dx$$

2)
$$M(x) = \int_{-\infty}^{\infty} [x - D(x)]^{2} f(x) dx$$

3)
$$M(x) = \sum_{i=1}^{n} [x_i - D(x)]^2 P_i$$

$$4) \quad M(x) = \sum_{i=1}^{n} x_i \cdot P_i$$

3. По какой формуле рассчитывается среднее квадратичное отклонение дискретной случайной величины

1)
$$\sigma(x) = \sqrt{\int_{-\infty}^{\infty} x f(x) dx}$$

2)
$$\sigma(x) = \sqrt{\int_{-\infty}^{\infty} [x - M(x)]^2 f(x) dx}$$

3)
$$\sigma(x) = \sqrt{\sum_{i=1}^{n} [x_i - M(x)]^2 P_i}$$

4)
$$\sigma(x) = \sqrt{\sum_{i=1}^{n} x_i \cdot P_i}$$

- 4. По какой формуле рассчитывается среднее квадратичное отклонение непрерывной случайной величины

 - 1) $\sigma(x) = \sqrt{\int_{-\infty}^{\infty} x f(x) dx}$ 2) $\sigma(x) = \sqrt{\int_{-\infty}^{\infty} [x M(x)]^2 f(x) dx}$ 3) $\sigma(x) = \sqrt{\sum_{i=1}^{n} [x_i M(x)]^2 P_i}$

 - 4) $\sigma(x) = \sqrt{\sum_{i=1}^{n} x_i \cdot P_i}$
- **5.** Правильная последовательность следующих этапов статистической работы:1.обработка данных 2.сбор данных 3.выводы, прогнозы.
 - 1) 123
 - 2) 132
 - 3) 231
 - 4) 213
- 6. По каким значениям из таблицы находят коэффициент для расчета
 - 1) доверительной вероятности и среднего значения
 - 2) уровня значимости и среднеквадратического отклонения
 - 3) доверительной вероятности и объёма выборки
 - 4) доверительной вероятности и уровня значимости
- 7. Что является функциональной зависимостью
 - 1) одному значению одной переменной величины соответствует множество значений другой
 - 2) одному значению одной переменной величины соответствует одно значение дру-
 - 3) одному значению одной переменной величины соответствует два значения другой
 - 4) одному значению одной переменной величины не соответствует ни одно значение другой
- 8. Как называется зависимость, если одному значению одной переменной соответствует множество значений другой
 - 1) функциональной
 - 2) обратно пропорциональной
 - 3) статистической
 - 4) прямо пропорциональной
- 9. Что позволяет установить метод регрессии
 - 1) зависимость между изменчивостью признаков
 - 2) меру тесноты связи двух переменных
 - 3) количественное изменение среднего значения одной величины по мере изменения
 - 4) доверительную вероятность и среднее значение
- 10. По какой формуле определяется линейный коэффициент корреляции

1)
$$r = \frac{\overline{X \cdot Y} - \overline{X} \cdot \overline{Y}}{\sigma_x \cdot \sigma_y}$$

1)
$$r = \frac{\overline{X \cdot Y} - \overline{X} \cdot \overline{Y}}{\sigma_x \cdot \sigma_y}$$
2)
$$r = \frac{n \sum xy - \sum x \cdot \sum y}{\sqrt{n \sum x^2 - (\sum x)^2 - x\sqrt{n \sum y^2 - (\sum y)^2}}}$$

3)
$$r = 1 - \frac{6\sum (x_i - y_i)^2}{n(n^2 - 1)}$$

$$4) \quad r = \frac{\sigma\sqrt{n-2}}{1-i^2}$$

$$\sum_{i=1}^{n} x_i$$

- **11.** Что находят по формуле $\frac{\displaystyle\sum_{i=1}^{n} x_{i}}{n}$
 - 1) дисперсию выборки
 - 2) среднее значение выборки
 - 3) генеральную совокупность
 - 4) среднее квадратическое отклонение

12. Что находят по формуле
$$\frac{\displaystyle\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}{n}$$

- - 1) среднее значение выборки
 - 2) дисперсию выборки
 - 3) среднее отклонение случайной величины
 - 4) коэффициент корреляции
- 13. Как называется статистическая совокупность, которая включает в себя все изучаемые объекты
 - 1) представительной выборкой
 - 2) генеральной совокупностью
 - 3) статистическим рядом
 - 4) вариационным рядом
- 14. Как называется статистическая совокупность, которая включает в себя не все изучаемые объекты, а лишь их часть
 - 1) выборкой
 - 2) генеральной совокупностью
 - 3) статистическим рядом
 - 4) вариационным рядом
- 15. Как называется интервал возможных значений искомого параметра, в котором могут находиться с некоторой вероятностью его значения
 - 1) доверительным интервалом
 - 2) вариационным интервалом
 - 3) корреляционным интервалом
 - 4) представительным интервалом

Эталоны правильных ответов к заданиям в тестовой форме

1	2	3	4	5	6	7	8	9	10
4)	1)	3)	2)	4)	3)	2)	3)	3)	1)
11									

2) 2) 2) 1) 1)

Задания закрытого типа на установление соответствия

Задание № 1

Прочитайте текст и установите соответствие Соотнесите классификацию события и её вероятность р

К каждой позиции, данной в левом столбце, подберите соответствующую позицию изправого столбца:

Вид	Вид события		ятность события
а	а Случайное		p=1
б	Достоверное	2	<i>p</i> =0
В	Невозможное	3	0 <p<1< td=""></p<1<>

Запишите выбранные цифры под соответствующими буквами

а	б	В

Задание № 2

Прочитайте текст и установите соответствие Вероятность события A равна p.

К каждой позиции, данной в левом столбце, подберите соответствующую позицию изправого столбца:

Собь	Событие		ероятность
а	Событие противоположное А	1	p(1-p)
б	Наступление в двух испытаниях события	2	p^3
	Α		
В	Наступление в трёх испытаниях события	3	p^2
	Α		
Г	Последовательное наступление события	4	1-p
	А и противоположного ему события		

Запишите выбранные цифры под соответствующими буквами

а	б	В	Γ

Задание № 3

Прочитайте текст и установите соответствие

Соотнесите характер корреляционной связи и значение коэффициента линейной корреляции r.

К каждой позиции, данной в левом столбце, подберите соответствующую позицию изправого столбца:

Значение коэффициента линейной		Xapa	актер корреляционной связи	
корреляции				
а	r <0,4	1	Линейная корреляционная связь тесная	
б	0,4≤ r ≤0,7	2	Линейная корреляция отсутствует	

В	0,7≤ <i>r</i> ≤1	3	Линейная функциональная связь
Γ	r =1	4	Линейная корреляционная связь слабая

Запишите выбранные цифры под соответствующими буквами

		1	' 11	
а	б	В	Г	

Задания закрытого типа на установление последовательности

Задание 4

Прочитайте текст и установите последовательность

Установите последовательность действий при построении доверительного интервала по полученной выборке при объёме выборки, меньше 30

1.	Определение полуширины интервала с помощью коэффициента Стьюдента
2.	Расчёт исправленного средне квадратического отклонения
3.	Определение максимального и минимального значений интервала
4.	Расчёт среднего выборочного

Запишите с	оответству	ющую посл	едовательн	ость ци	іфр,	определяющих	поря-
док ихпояв:	пения слева	направо					

Задание 5

Прочитайте текст и установите последовательность

Установите последовательность действий при первичной статистической обработки выборки с малым числом вариант

1.	Расчёт относительных частот
2.	Построение полигона частот или относительных частот
3.	Определения вариант
4.	Подсчёт частот встречаемости вариант в выборке

Запишите соответствующую последовательность цифр, определяющих порядок ихпоявления слева направо

Задание 6

Прочитайте текст и установите последовательность

Установите последовательность действий при первичной статистической обработки выборки с большим числом вариант

1.	Расчёт относительных частот и плотности относительных частот
2.	Определение максимального и минимального значений признака
3.	Построение гистограммы относительных частот или плотности относительных частот
4.	Подсчёт частот попадания значений в каждый интервал
5.	Разбитие всего диапазона значений на равные интервалы

Запишите о	Запишите соответствующую последовательность цифр, определяющих поря-					
док ихпоявления слева направо						

Задания комбинированного типа с выбором верного ответа и обоснованием выбора из предложенных

Задание № 7

Прочитайте текст, укажите правильный ответ и запишите аргументы, обосновывающие выбор ответа

Чему равна вероятность исцеления больного раком, если вероятность излечения при однократном применения определённого метода 0,6, а применить этот метод можно не более 2-х раз

- a. 0,36
- б. 0,84
- в. 0,16
- г. 0,7
- д. 0,9

Ответ:

Обоснование выбора:

Задание № 8

Прочитайте текст, укажите правильный ответ и запишите аргументы, обосновывающие выбор ответа

Чему равна равно математическое ожидание дискретной случайной величины, ряд которой представлен ниже.

X	1	3	5
р	0,5	0,3	0,2

- a. 2,4
- б. 3
- в. 9
- г. 1
- д. 1,5

Ответ:

Обоснование выбора:

Задания открытого типа с кратким ответом/ вставить термин, словосочетание....., дополнить предложенное

Задание № 9

Прочитайте текст и запишите развернутый обоснованный ответ.

С точки зрения теории вероятностей курение и заболевание раком лёгких являются ... событиями. Ответ:

Задания открытого типа с развернутым ответом

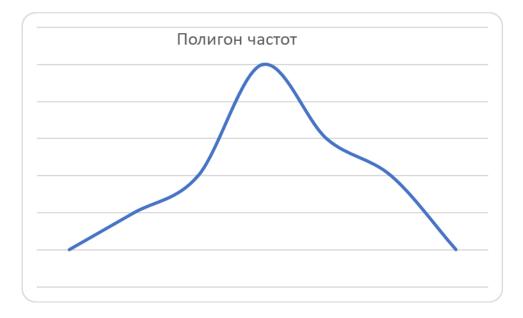
Задание № 10

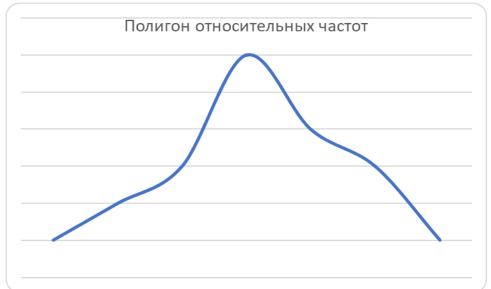
Прочитайте текст и запишите развернутый обоснованный ответ. Охарактеризуйте статистическую зависимость между возрастом и ростом человека в младенческом возрасте.

Ответ:

- **3) Типовые задания для оценивания результатов сформированности компетенции на уровне ИОПК 10.3**(Владеет программно-техническими средствами и методами, которые обеспечивают сбор, хранение, обработку, анализ и передачу информации с целью оптимизации профессиональной деятельности):
- 1. Изучалось число зубов, подвергавшихся лечению, у женщин среднего возраста, проживающих в некотором регионе. Была сделана выборка: 3,4,5,4,5,6,2,4,3,6,3,4,6,2,4,7,5,5,1,4. Составить дискретный статистический ряд распределения, построить полигон частот и полигон относительных частот. Рассчитать выборочные характеристики и по ним сделать точечные оценки генеральных характеристик. Сделать интервальную оценку генерального среднего значения с доверительной вероятностью 0,95.
- 2. Изучалась динамика изменения роста подростков в некотором городе. Для подростков определенного возраста была сделана выборка значений роста: 174,163,184,178,175,155,182,163,174,158,176,191,179,171,167,176,172,168,180,183,195,160, 164,171,174,180,182,191,166,188,166,170,172,180,187,184,178,174,171,159,176,171,186,180, 175,171,163,174,166,182. Составить интервальный статистический ряд распределения, построить гистограмму частот и гистограмму относительных частот. Рассчитать выборочные характеристики и по ним сделать точечные оценки генеральных характеристик. Найти доверительный интервал генерального среднего значения с доверительной вероятностью 0,95. (коэффициент Стьюдента равен 2,009).
- 3. При обследовании состояния здоровья работников большого предприятия изучалось их артериальное давление. Была получена выборка систолического давления у мужчин среднего возраста: 150,165,130,155,180,150,140,130,140,170,160,150,160,135,170,155,140,145,135,160,165,130, 150,175,120,150,155,165,155,145. Составить статистический интервальный ряд распределения, построить гистограмму частот и гистограмму относительных частот. Рассчитать выборочные характеристики и по ним сделать точечные оценки генеральных характеристик. Найти доверительный интервал генерального среднего значения с доверительной вероятностью 0.95 (коэффициент Стьюдента равен 2,045).

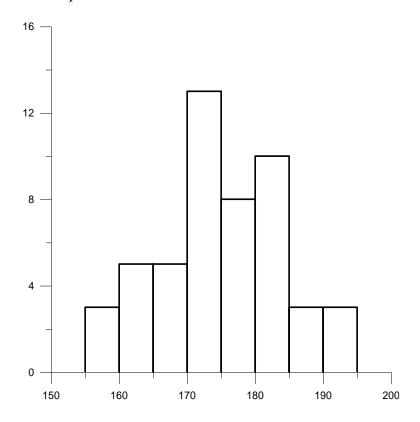
Эталоны ответов


1.

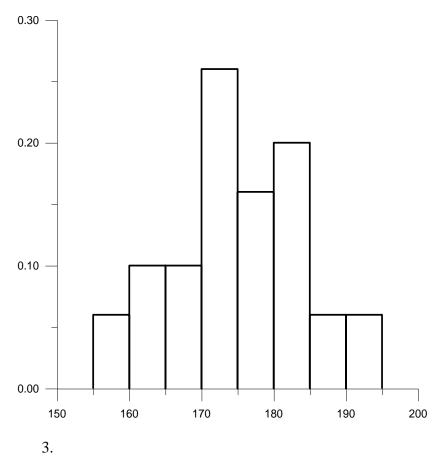

Величина	Значение
Среднее	4,15
Выборочное среднеквадратическое отклонение	1,53
Оценка генерального среднеквадратического отклонения	1,49
Интервальная оценка	(3,45; 4,85)

Дискретный ряд распределения

X	р
1	0,05
2	0,1
3	0,15
4	0,3
5	0,2
6	0,15


2.

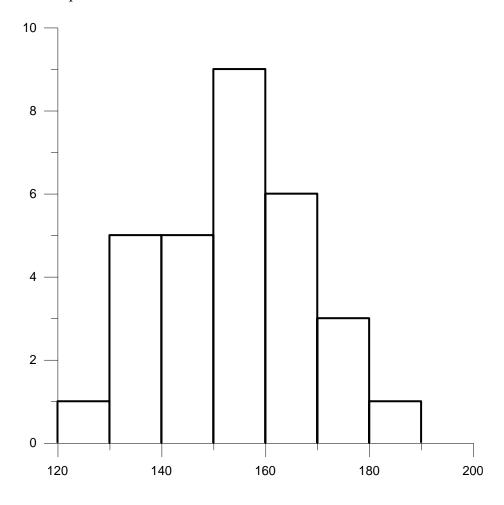
Величина	Значение
Среднее	174,5
Выборочное среднеквадратическое отклонение	9,1
Оценка генерального среднеквадратического отклонения	9,0
Интервальная оценка	(172; 177)


Интервальный ряд распределения

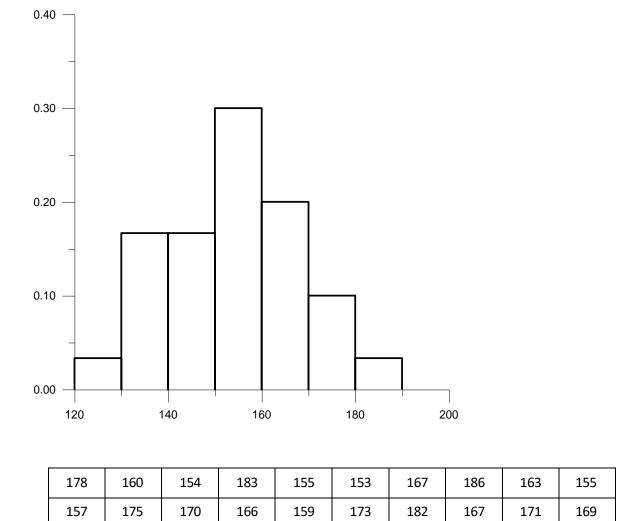
X	[155; 160)	[160; 165)	[165; 170)	[170; 175)	[175; 180)	[180; 185]	[185; 190)	[190; 195]
p	3	5	5	13	8	10	3	3

Гистограммачастот

Гистограммаотносительных частот


Величина Значение

Среднее	151
Выборочное среднеквадратическое отклонение	14,7
Оценка генерального среднеквадратического отклонения	14,45
Интервальная оценка	(146; 157)


Интервальный ряд распределения

\boldsymbol{X}	[120; 130)	[130; 140)	[140; 150)	[150; 160)	[160; 170)	[170; 180]	[180; 190]
p	1	5	5	9	6	3	1

Гистограмма частот

Гистограмма относительных частот

Необходимо построить интервальный вариационный ряд и его гистограмму.

Задание 4. Найти эмпирическую функцию по заданному распределению выборки:

Xi	1	5	8
nį	10	15	25

Задание 5.Данные о количестве пациентов кардиологического отделения Демидовской больницы приведены в таблице.

	•								
62	54	84	59	75	43	49	89	28	49
40	53	18	18	55	51	26	68	76	65
43	39	47	65	55	29	33	42	51	95
85	46	45	42	48	6	73	54	70	56
69	66	33	100	58	42	89	41	36	72
54	50	54	45	48	11	62	33	32	61

36	31	84	61	26	53	64	50	66	63
77	31	84	61	26	53	64	50	66	63
9	30	69	60	9	30	4	27	74	62
19	42	55	79	77	31	92	30	39	96

Найти эмпирическую функцию распределения по данным выборки.

Задание 6.Определить основные статистические показатели результатов измерения роста студентов, если данные выборки таковы (n=16):185, 171, 190, 170, 190, 178, 188,174,193,178, 176,180, 175, 176,180, 192.

Задание 7. Найтимедианудляинтервального ряда.

Превышение разрешенной Скорости движения (км/ч)	20–30	30–40	40–50	50–60	Больше 60
Количество нарушений	50	32	26	11	5

Задание 8.Для данного интервального статистического ряда определить моду и медиану.

Возрастные	До20	20–25	25–30	30–35	35–40	40–45	Старше
группы	лет						45
Число	346	872	1054	781	212	121	76
студентов							

Задание 9.Данныео количестве пациентов кардиологического отделения Демидовской больницы приведены в таблице.

62	54	84	59	75	43	49	89	28	49
40	53	18	18	55	51	26	68	76	65
43	39	47	65	55	29	33	42	51	95
85	46	45	42	48	6	73	54	70	56
69	66	33	100	58	42	89	41	36	72
54	50	54	45	48	11	62	33	32	61
36	31	84	61	26	53	64	50	66	63
77	31	84	61	26	53	64	50	66	63
9	30	69	60	9	30	4	27	74	62
19	42	55	79	77	31	92	30	39	96

требуется найти основные числовые характеристики вариационного ряда:

Модуль «Физика»

Задания комбинированного типа с выбором верного ответа и обоснованием выбора из предложенных

Задание 1. Биоэлектрические явления (уровень сложности: базовый)

Ситуация:

При регистрации мембранного потенциала покоя нейрона получено значение -70 мВ. После воздействия стимулом потенциал изменился до -55 мВ, но потенциал действия не возник.

Вопросы:

- 1. Объясните, почему не возник потенциал действия
- 2. Рассчитайте величину деполяризации
- 3. Какой минимальный стимул требуется для генерации ПД, если критический уровень деполяризации для данного нейрона составляет -50 мВ?

Эталон ответа:

- 1. Деполяризация недостаточна для достижения порога возбуждения
- 2. $\Delta V = -55 (-70) = 15 \text{ MB}$
- 3. Минимальный стимул: -50 (-70) = 20 мВ

Задание 2 Оптические явления уровень сложности: высокий

Ситуация:

При спектрофотометрическом исследовании гемоглобина получены разные значения оптической плотности при длинах волн 540 нм и 560 нм.

Вопрос:

Чем объясняется это различие?

- 1. Погрешностью калибровки спектрофотометра
- 2. Разным коэффициентом экстинкции окси- и дезоксигемоглобина на этих длинах волн
- 3. Наличием примесей в исследуемом образце

Ответ:

2) Разным коэффициентом экстинкции окси- и дезоксигемоглобина на этих длинах волн

Обоснование:

- Оксигемоглобин имеет максимум поглощения при 540 нм, дезоксигемоглобин при 560 нм
- Это свойство лежит в основе пульсоксиметрии (утверждение 2 верно)
- Погрешность калибровки (1) или примеси (3) не объясняют закономерное различие на специфических длинах волн

Задание 3. Клиническая задача (уровень сложности: повышенной сложности)

Клинический случай:

Пациент с подозрением на миокардиальную ишемию. При анализе ЭКГ:

- Удлинение интервала QT до 520 мс (норма <450 мс)
- Появление волны U
- Температура тела 35.5°C

Вопросы:

- 1. Какие биофизические процессы нарушены?
- 2. Как гипотермия влияет на:
 - а) проводимость мембраны кардиомиоцитов
 - б) работу Na^{+}/K^{+} -АТ Φ азы
- 3. Рассчитайте скорректированный QT (QTc) при ЧСС 60 уд/мин

Эталон ответа:

- 1. Нарушены:
 - о Реполяризация (К+-каналы)
 - о Электрохимический градиент
- 2. а) Снижает проводимость
 - б) Угнетает АТФ-азную активность
- 3. $QTc = QT/\sqrt{RR} = 520/1 = 520 \text{ Mc}$

Критерии оценки:

Задание Макс. балл Критерии

- 1 5 Правильность расчетов + объяснение
- 2 8 Точность вычислений + интерпретация
- 3 12 Полнота анализа + клиническое мышление

Рекомендации по выполнению:

- 1. Для расчетных задач показывайте все этапы вычислений
- 2. В клинических случаях сначала выделяйте ключевые биофизические параметры
- 3. Используйте формулы из предоставленного методического пособия

Задания закрытого типа на установление соответствия

Задание 1. Уровни организации живых систем

Установите соответствие между примерами биологических объектов и уровнями организации живой природы:

Пример биологического объекта (Группа А) Уровень организации (Группа Б)

а) Молекула ДНК 1) Молекулярный

б) Кардиомиоцит 2) Клеточный

в) Сердечная мышца 3) Тканевый

г) Сердце 4) Органный

д) Сердечно-сосудистая система 5) Системный

е) Человек 6) Организменный

Ответ:

$$a-1$$
, $6-2$, $B-3$, $\Gamma-4$, $\mu-5$, $e-6$

Задание 2. Биофизические методы исследования

Соотнесите методы диагностики с их физической основой:

Метод диагностики (Группа А)

Физический принцип (Группа Б)

- а) Электрокардиография (ЭКГ)
- 1) Регистрация электрических потенциалов
- б) Ультразвуковая допплерография
- 2) Эффект Допплера для движущихся объектов
- в) Магнитно-резонансная томография 3) Ядерный магнитный резонанс
- г) Спектрофотометрия
- 4) Поглощение света определённых длин волн

Ответ:

$$a - 1$$
, $6 - 2$, $B - 3$, $\Gamma - 4$

Задание 3. Транспорт веществ через мембрану

Установите соответствие между типами транспорта и их характеристиками:

Тип транспорта (Группа А) Характеристика (Группа Б)

- а) Простая диффузия
- 1) Не требует энергии, по градиенту концентрации
- б) Облегчённая диффузия
- 2) С участием транспортных белков
- в) Активный транспорт
- 3) С затратой АТФ против градиента
- г) Эндоцитоз
- 4) Поглощение крупных частиц мембраной

Ответ:

$$a-1, 6-2, B-3, \Gamma-4$$

Критерии оценки:

- 3 балла все соответствия установлены верно
- 2 балла допущена 1 ошибка
- **1 балл** допущено 2 ошибки
- 0 баллов более 2 оппибок

Методические рекомендации:

- 1. Внимательно анализируйте оба столбца перед установлением соответствий
- 2. Исключайте заведомо неверные варианты
- 3. Проверяйте логическую взаимосвязь между парными понятиями

Задание на установление последовательности этапов проведения биоимпедансного анализа

Тема: Биофизические методы исследования состава тела

Инструкция: Установите правильную последовательность этапов проведения биоимпедансного анализа состава тела, учитывая физические принципы метода. Пронумеруйте этапы от 1 до 6.

Этапы проведения:

- Обработка и интерпретация данных
- Наложение электродов на конечности
- Ввод антропометрических данных (рост, вес, возраст)
- Измерение электрического сопротивления тканей
- Подготовка пациента (лежачее положение, 5-10 мин покоя)
- Подача переменного тока частотой 50 кГц

Физические принципы:

- Разная электропроводность тканей (мышцы > жир)
- Закон Ома для биологических тканей
- Частотная зависимость импеданса
- Анизотропия электропроводности
- Влияние гидратации на измерения

Правильная последовательность:

- 1. Подготовка пациента (лежачее положение, 5-10 мин покоя)
- 2. Ввод антропометрических данных (рост, вес, возраст)
- 3. Наложение электродов на конечности
- 4. Подача переменного тока частотой 50 кГц
- 5. Измерение электрического сопротивления тканей
- 6. Обработка и интерпретация данных

Обоснование последовательности с биофизической точки зрения:

- 1. Подготовка пациента необходима для стабилизации распределения жидкостей в организме (устраняет влияние гравитации на результаты)
- 2. Ввод антропометрических данных позволяет скорректировать уравнения регрессии, используемые в расчетах (учитывает индивидуальные пропорции тела)
- 3. Наложение электродов по стандартной схеме (кисть-стопа) обеспечивает:
 - о Прохождение тока через основные компартменты тела
 - о Минимизацию контактного сопротивления
- 4. Подача тока 50 кГц выбрана потому что:
 - о Проникает через клеточные мембраны
 - о Минимизирует поляризационные эффекты
 - о Оптимальна для дифференциации тканей
- 5. Измерение сопротивления основано на:
 - \circ Разной проводимости жировой (\approx 300 Ом) и мышечной (\approx 70 Ом) тканей
 - о Законе Ома с учетом емкостных свойств биологических тканей
- 6. Интерпретация данных использует:
 - о Многофазные математические модели
 - о Поправочные коэффициенты для гидратации
 - о Сравнение с нормативными базами данных

Критерии оценки:

- 5 баллов абсолютно правильная последовательность
- 4 балла 1 ошибка в порядке этапов
- 3 балла правильный порядок основных этапов (1-2-6)
- 2 балла существенные нарушения логики измерений
- 0-1 балл неправильная последовательность

Дополнительное задание:

Рассчитайте процент жировой массы, если:

- Измеренное сопротивление: 500 Ом
- Длина тела: 170 см
- Используйте уравнение: %Fat = $0.5 \times (\text{рост}^2/\text{сопротивлениe})$ + 12 (Ответ: ≈25%)

Методические рекомендации:

1.	Обратите внимание на стандартные ошибки метода:
	о Влияние гидратации (±3%)
	 Положение электродов (±2%)
	о Температура кожи (±1.5%)
2.	Для углубленного изучения:
	о Анализ частотной зависимости импеданса
	 3D биоимпедансная томография
	 Динамический мониторинг состава тела
3.	Клиническое применение:
	о Оценка нутритивного статуса
	о Контроль отечного синдрома
	о Мониторинг реабилитации
	Задания открытой формы
1. Oca	новы биоэлектрических явлений
Допол	пните предложения:
1.	Разность потенциалов на мембране нейрона в состоянии покоя обусловлена пре-
	имущественно током ионов через каналы.
2.	При достижении критического уровня деполяризации (-55 мВ) происходит массо-
	вое открытиеканалов, что приводит к генерации потенциала.
Облас	сть применения: понимание механизмов нервной проводимости при неврологиче-
ских з	заболеваниях.
2. Био	омеханика опорно-двигательного аппарата
Завері	шите фразы:
1.	Модуль Юнга для костной ткани составляет примерно Па, что обеспечивает
	оптимальное сочетание и
2.	При остеопорозе уменьшение костной ткани приводит к повышению риска
	переломов при нагрузках свыше Н.

Практическое применение: оценка риска патологических переломов.

3. Физические основы медицинской визуализации

Допол	пните описания:					
1.	Разрешающая способность УЗ-сканера частотой 5 МГц составляет примерно					
	мм, что ограничено физическим явлением					
2.	Контрастность при МРТ усиливается за счет различий в времени протонов					
	в разных тканях, особенно параметра					
Диагі	Диагностическая ценность: выбор оптимального метода визуализации. 4. Термодинамика биологических систем					
4. Tep	омодинамика биологических систем					
Завер	шите утверждения:					
1. Энтропия живой системы поддерживается на постоянном уровне за с						
	что является проявлением принципа термодинамики.					
2.	При лихорадке 39°C теплопродукция увеличивается на%, что соответствует					
	увеличению скорости биохимических реакций в раза.					
Меди	цинское значение: понимание терморегуляторных нарушений.					
Мето	дические рекомендации					
1.	Критерии оценки:					
	о 2 балла за каждый полностью правильный ответ					
	 1 балл за частично правильный ответ 					
	。 0 баллов за неправильный/отсутствующий ответ					
2.	Требования к ответам:					
	о Использование точных физических терминов					
	о Указание единиц измерения где необходимо					

- 3. Рекомендации по выполнению:
 - о Ориентироваться на ключевые формулы и константы
 - о Учитывать физиологический контекст

о Клиническая интерпретация явлений

о Проверять размерности величин

Пример эталонных ответов (для преподавателя):

- 1.1. Калия; утечки
- $2.1\ 10^9$; прочности; эластичности
- 4.1. 0,3; дифракции
- 5.1. Метаболизма; второго

Примечание: В реальном тестировании эталоны ответов студентам не предоставляются. Данные примеры приведены для методического обеспечения преподавателей.

Ситуационные (или Расчетные) задачи

Задача 1. Расчет дозировки лекарственного препарата

Условие:

Пациенту массой 75 кг требуется ввести препарат из расчета 2 мг/кг. Препарат доступен в виде раствора с концентрацией 10 мг/мл.

Задание:

- 1. Рассчитайте общую дозу препарата (в мг)
- 2. Определите необходимый объем раствора для инъекции (в мл)
- 3. Если препарат вводится капельно со скоростью 20 капель/мин, а в 1 мл содержится 40 капель, рассчитайте время введения всей дозы

Эталон ответа:

- 1. $75 \text{ kg} \times 2 \text{ mg/kg} = 150 \text{ mg}$
- 2. $150 \text{ мг} \div 10 \text{ мг/мл} = 15 \text{ мл}$
- 3. $(15 \text{ мл} \times 40 \text{ капель/мл}) \div 20 \text{ капель/мин} = 30 \text{ минут}$

Задача 2. Анализ эпидемиологических данных

Условие:

В клинике за месяц зарегистрировано:

- 120 случаев ОРВИ
- 45 случаев пневмонии

• 15 случаев бронхита

Задание:

- 1. Постройте круговую диаграмму структуры заболеваемости
- 2. Рассчитайте угол сектора для каждой патологии
- 3. Определите соотношение случаев ОРВИ к пневмонии

Эталон ответа:

- 1. Общее количество случаев: 120 + 45 + 15 = 180
- 2. Углы секторов:
 - \circ ОРВИ: $(120/180) \times 360^{\circ} = 240^{\circ}$
 - \circ Пневмония: $(45/180) \times 360^{\circ} = 90^{\circ}$
 - \circ Бронхит: $(15/180) \times 360^{\circ} = 30^{\circ}$
- 3. Соотношение OPBИ/пневмония = 120:45 = 8:3

Задача 3. Статистика в клинических исследованиях

Условие:

При изучении нового гипотензивного препарата получены данные по снижению САД (мм рт.ст.) у 5 пациентов:

Залание:

- 1. Рассчитайте среднее арифметическое
- 2. Найдите медиану
- 3. Определите размах вариации

Эталон ответа:

- 1. $(12+15+8+10+20) \div 5 = 13$ MM pt.ct.
- 2. Ряд по возрастанию: $8, 10, 12, 15, 20 \rightarrow$ медиана = 12
- 3. Pasmax = 20 8 = 12 mm pt.ct.

Задача 4. Фармакокинетика (экспоненциальный распад)

Условие:

Концентрация препарата в крови снижается по закону:

$$C(t) = 80 \times e^{(-0.1t)} \text{ M}_{\Gamma}/\pi$$

Задание:

- 1. Рассчитайте концентрацию через 3 часа
- 2. Определите период полувыведения (Т½)
- 3. Через какое время концентрация достигнет 20 мг/л?

Эталон ответа:

- 1. $C(3) = 80 \times e^{(-0.1 \times 3)} \approx 59.6 \text{ мг/л}$
- 2. $T\frac{1}{2} = \ln(2)/0.1 \approx 6.93$ часа
- 3. $20 = 80 \times e^{(-0.1t)} \rightarrow t \approx 13.86$ часа

Задача 5. Расчет ИМТ и клиническая интерпретация

Условие:

Пациент: рост 175 см, масса 92 кг

Задание:

- 1. Рассчитайте индекс массы тела (ИМТ)
- 2. Определите степень ожирения
- 3. Рассчитайте идеальную массу тела по формуле Девина

Эталон ответа:

- 1. $\text{ИМT} = 92 \div (1.75)^2 \approx 30.04$
- 2. **Ожирение I степени** (ИМТ 30-34.9)
- 3. Формула Девина:
 - \circ Мужчины: $50 + 0.9 \times (175 152) =$ **50 + 20.7 = 70.7**кг

Методические рекомендации

1. Критерии оценки:

- о Полное решение с правильными единицами измерения 5 баллов
- Правильный метод с арифметической ошибкой 3 балла

о Неверный подход — 0 баллов

2. Требования к оформлению:

- о Обязательное указание размерностей
- о Промежуточные вычисления
- о Клиническая интерпретация результатов

3. Связь с медициной:

- о Задача 1: точность дозирования
- о Задача 2: анализ заболеваемости
- о Задача 3: обработка клинических данных
- о Задача 4: динамика лекарств
- о Задача 5: диагностика ожирения

Приложения:

- Таблица перевода ИМТ в категории массы тела
- Шкала корреляции ИМТ и рисков для здоровья
- Калькулятор фармакокинетических параметров

Для углубленного изучения рекомендуется:

- 1. "Математическая статистика в медицине" (Петров А.Н., 2023)
- 2. Руководство ВОЗ по расчету лекарственных доз
- 3. Клинические рекомендации по диагностике ожирения

Рекомендуемая литература

- 1. Медицинская и биологическая физика: учебник / А. Н. Ремизов. ;-е изд., испр. и перераб. М.: ГЭОТАР-Медиа, 2013.-648 с.: ил.
- 2. Медицинская и биологическая физика. Курс лекций с задачами: учебное пособие. Федорова В.Н., Фаустов Е.В. 2010. 592 с.
- 3. Физика и биофизика: учебник / В. Ф. Антонов, Е. К. Козлова, А. М. Черныш. 2-е изд., испр. и доп. М. : ГЭОТАР-Медиа, 2014. 472 с. : ил.

Справка

о материально-техническом обеспечении рабочей программы дисциплины **Физика**, математика

(название дисциплины, модуля, практики)

№ п\п	Наименование специаль- ных* помещений и поме- щений для самостоятель- ной работы	Оснащенность специальных помещений и поме- щений для самостоятельной работы
1	Лаборатория по физике и математике №1 (к 402)	Медицинские торсионные весы, электронный осциллографы, аудиотестер, рефрактометр, оптический поляриметр, электрические датчики: фотодатчик, индуктивный, пьезоэлектрический (измеритель давления), терморезисторный (измеритель температуры), радиометр, аппарат для гальванизации и электрофореза «поток», аппараты для дарсонвализации искра» и «элад», аппарат для низкочастотной терапии «тонус», электрокардиограф, электрические измерительные приборы: амперметры, вольтметры, мультиметры, генератор электрических сигналов звуковой частоты.
2	Лаборатория по физике и математике №2 (к 404)	Медицинские торсионные весы, электронный осциллографы, аудиометр, аудиотестер, рефрактометр, оптический поляриметр, электрические датчики: фотодатчик, индуктивный, пьезоэлектрический (измеритель давления), терморезисторный (измеритель температуры), радиометр, аппарат для гальванизации и электрофореза «поток», аппараты для дарсонвализации искра» и «элад», электрокардиографы, электрические измерительные приборы: амперметры, вольтметры, мультиметры, генератор электрических сигналов звуковой частоты.
3	Лаборатория по физике и математике №3(к 405)	Медицинские торсионные весы, электронный осциллографы, аудиотестер, рефрактометр, оптический поляриметр, электрические датчики: фотодатчик, индуктивный, пьезоэлектрический (измеритель давления), терморезисторный (измеритель температуры), радиометр, аппарат для гальванизации и электрофореза «поток», аппараты для дарсонвализации искра» и «элад», электрокардиографы, аппарат «электросон» для низкочастотной терапии, электрические измерительные приборы: амперметры, вольтметры, мультиметры, генератор электрических сигналов звуковой частоты.
4	Компьютерный класс	Персональные компьютеры (25 шт.), интерактивная доска

^{*}Специальные помещения - учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Лист регистрации изменений и дополнений на ______ учебный год в рабочую программу дисциплины (модуля, практики)

(название дисциплины, модуля, практики)					
для обучающихся курса,					
специ	альность:				
			(название специально	ости)	
форм	а обучения: очная/заочна	Я			
Изме	нения и дополнения в р	абочую программу ди	сциплины рассмотрень	и на	
засед	ании кафедры «>	»	202 г. (протокол №)	
Зав. кафедрой (ФИО)					
	подпись				
Содержание изменений и дополнений					
$N_{\underline{0}}$	Раздел, пункт, номер	Старый текст	Новый текст	Комментарий	
Π/Π	страницы, абзац				
	Примеры:				
1		•			
2					

Использование балльно-накопительной системы

Модуль «Математика»

- 1. Вводный контроль (до 3-х задач) в начале занятия 5 баллов
- 2. Рубежный контроль по модулю «Математика»
 - 2.1. Решение 5 задач 15 баллов
 - 2.2. Компьютерное тестирование по модулю «Математика»

Оценка рубежного контроля в тестовой форме

Менее 72% правильных ответов - 0 баллов

От 72 до 100% правильных ответов от 18 до 25- баллов

72	76	80	84	88	92	96	100
18	19	20	21	22	23	24	25

- 3. Работа в аудитории 1 балл.
- 4. Максимальная сумма баллов 70
- 5. Студенты, набравшие 50 и более баллов, получают зачет.

Модуль «Физика»

- 1. Оценка выполнения лабораторной работы 10 баллов
- 5 баллов ответ по теоретической части работы
- 5 баллов выполнение практической части работы

Максимальное число баллов за лабораторный практикум – 60

- 2. Оценка рубежного контроля в тестовой форме. Менее 72% правильных ответов 0 баллов. От 72 до 100% число баллов равно числу правильных ответов.
- 3. Максимальная сумма баллов 110. Студенты, набравшие 78 и более баллов, получают зачет.

Штрафные баллы:

Пропуск лекции, практического занятия или лабораторной работы по неуважительной причине – 3